Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into the Development of Epithelial Cells

29.10.2010
Scientists of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and the Experimental and Clinical Research Center (ECRC) of MDC and Charité in Berlin-Buch have gained new insights into the development of epithelial cells and their molecular repertoire.

Dr. Max Werth, Katharina Walentin and Professor Kai Schmidt-Ott have identified a transcription factor (grainyhead-like 2, Grhl2), which regulates the composition of the molecular “bridges” that link adjacent epithelial cells. The authors were able to demonstrate that Grhl2, via DNA-binding, directly regulates the expression of two such cell junctional molecules, E-cadherin and claudin 4 (Development, doi:10.1242/dev.055483)*.

This could be important for understanding the mechanisms of various diseases. For example, Grhl2-deficient mice die early in embryonic development and display defects of neural tube closure, including spina bifida.

Spina bifida is a common human congenital disease that is often associated with severe disabilities. Little is known about how the disease develops, and Grhl2 may be an important player in its pathogenesis.

Furthermore, the authors hypothesize that Grhl2 may also have important functions in internal organs, such as the kidney. Epithelial cells line the renal tubular system, which in humans is several kilometers long.

This system of renal tubules, together with the renal corpuscles, forms the basic structural and functional unit of the kidney – the nephron. The human kidney filters waste products from 1700 liters of blood per day, of which 180 liters are collected as primary urine and of which finally one to two liters are excreted as urine.

The studies of the authors show that Grhl2 is produced in nephron segments that are relatively impermeable to water and solutes and that fine-tune the composition of urine.

A dysfunction of Grhl2 in these cells may affect epithelial barrier formation and other cell characteristics and, thereby, contribute to various diseases, including congenital abnormalities of the kidney or the development of hypertension.

*The transcription factor grainyhead-like 2 (Grhl2) regulates molecular composition of the epithelial apical junctional complex
Max Werth1,2,*, Katharina Walentin1,2*, Annekatrin Aue1,2, Jörg Schönheit1, Anne Wuebken1, Naomi Pode-Shakked3, Larissa Vilianovitch1, Bettina Erdmann1, Benjamin Dekel3, Michael Bader1, Jonathan Barasch4, Frank Rosenbauer1, Friedrich C. Luft1,2, Kai M. Schmidt-Ott1,2,#
* these authors contributed equally
1Max-Delbrück Center for Molecular Medicine, Berlin, Germany; 2Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Campus Buch, Berlin, Germany, 3Department of Pediatrics and Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer, Israel, 4Department of Medicine, Columbia University College of Physicians and Surgeons, New York, USA

# Corresponding author: Prof. Dr. Kai M. Schmidt-Ott, e-mail: kai.schmidt-ott@mdc-berlin.de

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>