Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into the Development of Epithelial Cells

29.10.2010
Scientists of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and the Experimental and Clinical Research Center (ECRC) of MDC and Charité in Berlin-Buch have gained new insights into the development of epithelial cells and their molecular repertoire.

Dr. Max Werth, Katharina Walentin and Professor Kai Schmidt-Ott have identified a transcription factor (grainyhead-like 2, Grhl2), which regulates the composition of the molecular “bridges” that link adjacent epithelial cells. The authors were able to demonstrate that Grhl2, via DNA-binding, directly regulates the expression of two such cell junctional molecules, E-cadherin and claudin 4 (Development, doi:10.1242/dev.055483)*.

This could be important for understanding the mechanisms of various diseases. For example, Grhl2-deficient mice die early in embryonic development and display defects of neural tube closure, including spina bifida.

Spina bifida is a common human congenital disease that is often associated with severe disabilities. Little is known about how the disease develops, and Grhl2 may be an important player in its pathogenesis.

Furthermore, the authors hypothesize that Grhl2 may also have important functions in internal organs, such as the kidney. Epithelial cells line the renal tubular system, which in humans is several kilometers long.

This system of renal tubules, together with the renal corpuscles, forms the basic structural and functional unit of the kidney – the nephron. The human kidney filters waste products from 1700 liters of blood per day, of which 180 liters are collected as primary urine and of which finally one to two liters are excreted as urine.

The studies of the authors show that Grhl2 is produced in nephron segments that are relatively impermeable to water and solutes and that fine-tune the composition of urine.

A dysfunction of Grhl2 in these cells may affect epithelial barrier formation and other cell characteristics and, thereby, contribute to various diseases, including congenital abnormalities of the kidney or the development of hypertension.

*The transcription factor grainyhead-like 2 (Grhl2) regulates molecular composition of the epithelial apical junctional complex
Max Werth1,2,*, Katharina Walentin1,2*, Annekatrin Aue1,2, Jörg Schönheit1, Anne Wuebken1, Naomi Pode-Shakked3, Larissa Vilianovitch1, Bettina Erdmann1, Benjamin Dekel3, Michael Bader1, Jonathan Barasch4, Frank Rosenbauer1, Friedrich C. Luft1,2, Kai M. Schmidt-Ott1,2,#
* these authors contributed equally
1Max-Delbrück Center for Molecular Medicine, Berlin, Germany; 2Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Campus Buch, Berlin, Germany, 3Department of Pediatrics and Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer, Israel, 4Department of Medicine, Columbia University College of Physicians and Surgeons, New York, USA

# Corresponding author: Prof. Dr. Kai M. Schmidt-Ott, e-mail: kai.schmidt-ott@mdc-berlin.de

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>