Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into the Development of Epithelial Cells

06.08.2008
Epithelial cells cover all internal and external surfaces of the body. They have an upper and a lower side, which have different functions.

Until now, scientists assumed that these two poles develop in all epithelial cells in the same manner - irrespective of whether they are located in the heart, in the retina, or in the nervous system. Now, Dr. Nana Bit-Avragim, Dr. Nicole Hellwig, and Dr. Salim Abdelilah-Seyfried have shown that, depending on the tissue, a different variation of a complex consisting of five core proteins is active and orientates the epithelial cells. The results of the MDC scientists have now been published in the Journal of Cell Science (2008, Vol. 121, pp. 2503-2510)*.

Scientists worldwide use zebrafish to study the development of vertebrates, the group to which humans also belong. Zebrafish are only a few centimeters long and their embryos are transparent, which is why researchers can observe every change under the microscope. In the early development of zebrafish, the heart is like a tube surrounded by a pump of epithelial cells.

The upper and lower sides of an epithelial cell are clearly different. The upper side, which forms a boundary between organs and either tissue fluid, hollow spaces, or the environment, has a different function than the lower side facing the connective tissue. Both poles of an epithelial cell are vital for the functioning of the heart and other organs.

... more about:
»Development »Heart »epithelial
Different proteins steer cell polarity
Until now, the scientists had assumed that the development of the cell poles was steered by a protein complex which scientists call Crumbs/Nagie oko complex. "What is surprising is that, depending on the tissue, the protein complex has a different composition while being fully functional," Dr. Abdelilah-Seyfried explained. Thus, some proteins in the heart are not needed, but for the development of epithelial cells of the retina they are fundamental. "The program as understood previously may apply for individual cells in the laboratory," Dr. Abdelilah-Seyfried said, "but in a complex organism like the zebrafish, there are many deviations." In the opinion of the researchers, these deviations indicate that the epithelial cells have adapted to their tasks in the respective tissue. Until now, these processes have not been fully elucidated. Next, the MDC researchers want to find out whether still more proteins are involved in epithelial cell polarization.

*Divergent polarization mechanisms during vertebrate epithelial development mediated by the Crumbs complex protein Nagie oko

Nana Bit-Avragim1,2,*, Nicole Hellwig1,*, Franziska Rudolph1, Chantilly Munson3, Didier Y.S. Stainier3 and Salim Abdelilah-Seyfried1,?

1Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
2Department of Cardiology, The Charité University Medical School of Berlin, Campus Buch, Campus Virchow Clinics, Berlin, Germany

3Department of Biochemistry and Biophysics and Programs in Developmental Biology, Genetics, and Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, CA 94143-2711, USA

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10¸13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/en/research/research_teams/cell_polarity_and_epithelial_development/index.html

Further reports about: Development Heart epithelial

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>