Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Insights into the Control of Cellular Protein Production

Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have gained new insights into the control of cellular protein production.

Experimental analysis of genetically modified mice revealed that an evolutionary conserved regulatory mechanism of protein production plays an important role in highly developed mammals.

The mouse-model findings of Dr. Klaus Wethmar, Professor Achim Leutz and colleagues could contribute to the development of new therapies and drugs to combat diseases such as cancer. (Genes & Development, doi: 10.1101/gad.557910).*

Proteins are the building blocks of every living cell. The blueprints of the proteins are encoded in the DNA of genes. These blueprints are first transcribed into messenger RNA (mRNA), which then serve as a template for protein production. Some mRNAs contain short upstream open reading frames (uORFs), which control protein production depending on the respective cell physiology. Such regulatory uORFs occur in all organisms from yeast to humans. They are predominantly prevalent in the mRNAs of key regulatory proteins involved in cell proliferation and differentiation as well as cell metabolism and cellular stress management.

In their studies on a mouse model, MDC researchers led by Professor Leutz succeeded for the first time in detecting and measuring the physiological relevance of an uORF conserved in all vertebrates including humans. They discovered that mice deficient in the uORF of an important regulatory protein showed disturbed liver regeneration and impaired bone growth. Based on these findings, together with the widespread prevalence of uORFs in numerous other mRNAs, the MDC researchers suggest that evolutionary conserved uORFs may have comprehensive regulatory functions in the living organism.

The MDC scientists suspect that regulation of protein production by uORFs is associated with many diseases, in particular cancer diseases, since for example the transcripts of growth factors or oncogenes often contain uORFs. "Currently, no drugs exist which specifically target the control of protein production by uORFs," Professor Leutz explained. "However, since the regulatory function of uORFs is highly relevant, it would be reasonable to screen for drugs which can influence the function of uORFs."

*C/EBPbeta?uORF mice - a genetic model for uORF-mediated translational control in mammals
Klaus Wethmar1,2, Valérie Bégay1,3, Jeske J. Smink1,3, Katrin Zaragoza1,3, Volker Wiesenthal1,4, Bernd Dörken2, Cornelis F. Calkhoven5 and Achim Leutz1,6,7
1) Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, D-13092 Berlin, Germany.
2) Charité, Campus Virchow Klinikum, University Medicine Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany.
3) These authors contributed equally to this study and are listed in alphabetical order.
4) Current address: Deutsches Zentrum für Luft- und Raumfahrt e.V., Heinrich-Konen-Str. 1, 53227 Bonn, Germany.
5) Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
6) Department of Biology, Humboldt-University, Invalidenstr. 43, D-10115 Berlin, Germany.

7) Corresponding author

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>