Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights on cell competition

17.09.2012
A research project led by CNIO scientists clarifies how tissues and organs select the 'best' cells for themselves, at the expense of 'losers' who might cause disease

Scientists from the Spanish National Cancer Research Centre (CNIO) describe how natural selection also occurs at the cellular level, and how our body's tissues and organs strive to retain the best cells in their ranks in order to fend off disease processes. These results appear this week in the new issue of Cell Reports. The research, carried out in the CNIO, is led by Eduardo Moreno, who is currently working at the University of Bern in Switzerland.

Recent studies suggest that natural selection described by Charles Darwin also occurs at the cellular level, as our body's tissues and organs strive to retain the best cells in their ranks in order to fend off disease processes.

Pancreatic cells perform very different functions from skin cells – insulin secretion and barrier protection respectively – even though their genetic material is exactly identical; and this is true of the 200 different cell types that form a human being.

Despite burgeoning interest in the mechanisms of cell competition, which keep all such functions running smoothly in each body compartment, the exact cellular and molecular mechanisms responsible for maintaining this homeostasis have yet to be established.

Through their studies on fruit flies (Drosophila melanogaster), among the most widely used animal models in research, the authors of the paper have been able to show that cell competition proceeds in various stages.

First, the cells picked as winners for their superior ability to perform cell functions eliminate the loser cells via programmed cell death or apoptosis. Then the dead cells' remains are ingested by the haemocytes, the fly equivalent of our macrophages.

"The paper's main contribution is that we provide first-time evidence of the role of the haemocytes, cells circulating in the fly haemolymph, in eliminating cell residues during competition", explains first author Fidel Lolo.

Co-author Sergio Casas-Tintó adds that the study's results indicate that the genes necessary for the haemocytes to eliminate these residues – in a process known as phagocytosis – are not required for the apoptosis of loser cells.

"We suggest that phagocytosis is not a cause but a consequence of cell death", affirms Eduardo Moreno, "and more work will need doing to determine the forces governing the selection and subsequent destruction of losers".

IMPLICATIONS ON CANCER

Cell competition is closely linked to pathogenic processes such as cancer. "There is growing evidence for the importance of these processes at tumour borders, where biological markers suggest an accumulation of dead cells, as if we were contemplating a line of battle", Lolo continues.

Understanding the mechanisms of cell competition may provide crucial insights into the earliest stages of a tumour's formation, favouring early detection, even without macroscopic evidence, and the design of new drugs able to block tumour growth from the very first development stages.

Referente article:

Cell competition timeline: winners kill losers, which are extruded and engulfed by hemocytes. Fidel-Nicolaìs Lolo, Sergio Casas Tinto and Eduardo Moreno. Cell Reports (2012). doi: 10.1016/j.celrep.2012.08.012

Nuria Noriega | EurekAlert!
Further information:
http://www.cnio.es/es/index.asp

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>