Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights Into Australia's Unique Platypus

04.11.2009
New insights into the biology of the platypus and echidna have been published, providing a collection of unique research data about the world’s only monotremes.

University of Adelaide geneticist Dr Frank Grützner and his team have authored five of 28 papers which appear in two special issues of the Australian Journal of Zoology and Reproduction Fertility and Development.

The articles shed new light on the extraordinary complex platypus sex chromosome system.

“For the first time we have looked at how the 10 sex chromosomes find each other during sperm development in platypus,” Dr Grützner says.

“We discovered that a remarkably organised mechanism must exist in platypus, where sex chromosomes from one end pair first and then they go down the sex chromosome chain, just like a zipper. There is nothing random about it.”

Dr Grützner and his colleagues also isolated and analysed for the first time the sequence of the male-specific Y chromosomes.

“Previously we knew nothing about the Y chromosomes because only the female platypus genome was sequenced. The data we found has given us valuable clues about the evolution of Y chromosomes in all mammals, including humans,” Dr Grützner says

All 28 published articles in the CSIRO journals have arisen from the Boden Research Conference, “Beyond the Platypus Genome”, hosted by the University of Adelaide in November 2008, which attracted researchers from around the world.

The published papers represent a wide range of monotreme research, from genome to field biology, population genetics and captive breeding, evolution to immunology, venom, sperm and milk in both the platypus and echidna.

“I expect these results to make a major impact in the field of monotreme research and mammal evolution,” Dr Grützner says.

“We have entered a new era in monotreme research, where we are seeing a more integrated approach using genomics, biochemistry and field biology to tackle important questions in monotreme biology. This knowledge will also help us conserve these iconic Australian mammals,” he says.

Dr Frank Grutzner
ARC Research Fellow
School of Molecular & Biomedical Science
The University of Adelaide
Phone +61 8 8303 4812
Mobile +61 417 026 302

Dr Frank Grutzner | Newswise Science News
Further information:
http://www.adelaide.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>