Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights to air supply

12.04.2010
Teruhisa Hirai of the RIKEN SPring-8 Center, Harima, and colleagues have obtained structural information about the physiologically important protein called erythrocyte anion exchanger 1 (AE1)1.

As well as being expressed in the kidney, AE1 is the most abundant protein in the membrane of red blood cells, or erythrocytes, and helps prevent tissue damage by regulating oxygen supply.

Carbon dioxide, produced when food is burnt for energy, is released into the bloodstream and, on encountering erythrocytes, is converted into bicarbonate (HCO3¯) by the enzyme carbonic anhydrase bound to AE1. In a crucial step—the ‘chloride shift’—chloride is exchanged for HCO3¯ across the erythrocyte membrane via AE1. This lowers erythrocyte pH, resulting in the regulated release of oxygen from hemoglobin.

Despite its importance, there is limited structural information about AE1, particularly the membrane-spanning domain. “Like many membrane proteins, AE1 is very fragile, making structural information difficult to obtain,” says Hirai.

Naotaka Hamasaki and colleagues at Nagasaki International University and Kyushu University purified AE1 stably with the membrane domain fixed in an outward-open conformation, and good two-dimensional crystals were prepared at RIKEN by Tomohiro Yamaguchi. “These were critical steps for structural analysis,” explains Hirai.

The researchers merged 31 images, each taken from a different angle, to produce a three-dimensional image. Interestingly, they found structural similarities between AE1 and a bacterial transporter protein related to a class of chloride channels called ‘ClC channels’ found in animals, including humans.

DNA sequence information is available for the anion exchanger and ClC gene families, but the researchers are the first to uncover structural similarities between the encoded proteins.

ClC channels of mammals conduct chloride ions and are involved in regulating the electrical excitation of skeletal muscles. The bacterial protein, however, functions as a transporter, exchanging chloride ions and protons across the bacterial membrane.

“AE1 has a putative chloride binding site similar to that of the bacterial ClC protein, although this is yet to be proven biochemically,” explains Hirai.

The observed resemblance between AE1 and ClC should help address the chloride transport mechanism, which is not well understood for either family.

“We need to improve the resolution of the current outward-open conformation structure of AE1 and solve the structure of the inward-open conformation to understand the conformational change during transport,” Hirai notes.

AE1 mutations are associated with the human genetic disorders Southeast Asian ovalocytosis and distal renal tubular acidosis, so structural knowledge of AE1 might eventually lead to treatments.

The corresponding author for this highlight is based at the Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center

Journal information

1. Yamaguchi, T., Ikeda, Y., Abe, Y., Kuma, H., Kang, D., Hamasaki, N. & Hirai, T. Structure of the membrane domain of human erythrocyte anion exchanger 1 revealed by electron crystallography. Journal of Molecular Biology 397, 179–189 (2010).

| Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6222
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>