Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights into a Virus Proteome

23.11.2012
Max Planck Scientists Identify Unknown Proteins of the Herpesvirus

The genome encodes the complete information needed by an organism, including that required for protein production. Viruses, which are up to a thousand times smaller than human cells, have considerably smaller genomes.


Herpesvirus

Using a type of herpesvirus as a model system, the scientists of the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich and their collaboration partners at the University of California in San Francisco have shown that the genome of this virus contains much more information than previously assumed.

The researchers identified several hundred novel proteins, many of which were surprisingly small. The results of the study have now been published in Science.

More than 80 percent of the world’s population is infected with the herpesvirus, which can cause severe diseases in newborns and in persons with weakened immune system. Researchers had already sequenced the herpesvirus genome 20 years ago, thinking they could then predict all proteins that the virus produces (virus proteome). Now scientists from the research department of Matthias Mann, director at the MPI of Biochemistry, and their American colleagues have analyzed the information content of the genome more precisely.

Small but highly complex

To carry out their study, the scientists infected cells with herpesvirus and observed which proteins the virus produced inside the cell over a period of 72 hours. In order for proteins to be produced at all, the cell machinery must first make copies of the genetic material as intermediate products (RNA). While investigating the intermediate products of the herpesvirus, the American collaborators discovered many novel RNA molecules which were in large part surprisingly short. They also found that the organization of information required for protein production in the virus genome was far more complex than previously assumed. Annette Michalski, a scientist in the Department of Proteomics and Signal Transduction at the MPI of Biochemistry, was subsequently able to confirm directly the predicted viral proteins in the infected cell using mass spectrometry. This method enables an overview of the complete proteome of the virus-infected cell.

The results of the American and German researchers provide detailed insight into the complex mechanisms used by the virus. “We showed that it’s not enough merely to know the virus genome to understand the biology of the herpesvirus,” Annette Michalski said. “What is important is to look at the products actually produced from the genome.” Even human genes may be much more complex than the genome sequence itself indicates, commented the researchers. Matthias Mann and his colleagues plan to investigate this question further in the coming years.

Original publication:
N. Stern-Ginossar , B. Weisburd, A. Michalski, V. T. Khanh Le, M. Y. Hein, S.-X. Huang, M. Ma, B. Shen, S.-B. Qian, H. Hengel, M. Mann, N. T. Ingolia, J. S. Weissmann: Decoding Human Cytomegalovirus, Science, November 23, 2012.
DOI:10.1126/science.1227919

Contact:
Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
e-mail: mmann@biochem.mpg.de
www.biochem.mpg.de/mann

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone: +49 89 8578-2824
e-mail: konschak@biochem.mpg.de
Further information:

http://www.biochem.mpg.de/en/news/pressroom/086_Mann_HCMV.html

http://www.biochem.mpg.de/mann
(Research Department Proteomics and Signal Transduction)

http://weissmanlab.ucsf.edu/
Hompage of Weissmann Lab at UCSF)

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>