Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insight into Primate Eye Evolution

20.05.2009
Researchers comparing the fetal development of the eye of the owl monkey with that of the capuchin monkey have found that only a minor difference in the timing of cell proliferation can explain the multiple anatomical differences in the two kinds of eyes.

The findings help scientists understand how a structure as complex as the eye could change gradually through evolution, yet remain functional.

The findings also offer a lesson in how seemingly simple genetic changes in the brain and nervous system could produce the multiple evolutionary changes seen in more advanced brains, without compromising function.

Analysis for this study was performed at St. Jude Children’s Research Hospital. The primates were housed at the Centro Nacional de Primates in Brazil. Contributing researchers at Cornell University and Universidade Federal do Pará, Brazil, approved all procedures. The researchers published their findings in the early online issue of Proceedings of the National Academy of Sciences.

“The molecular, cellular and genetic pathways that coordinate proliferation during development have been fine-tuned since the first multicellular organisms emerged millions of years ago,” said Michael Dyer, Ph.D., member of St. Jude Developmental Neurobiology and the paper’s first author. “When these pathways are deregulated during human development, one of the consequences is childhood cancer. Therefore, by studying how changes in the regulation of proliferation during development can lead to dramatic changes in form and function during evolution, we can gain a deeper understanding of these ancient pathways that lie at the heart of many pediatric cancers.”

The owl monkey’s eye has numerous adaptations to make it effective for nocturnal (active during the night) function. For example, it has a greater number of rod photoreceptor cells than the capuchin monkey, which is diurnal (active during the day). Rod cells are the most light-sensitive cells in the retina making them effective for nighttime vision. The owl monkey’s nocturnal retina is also larger and lacks a fovea, the central region of high-density cone photoreceptors that gives the diurnal eye high acuity and daytime color vision.

For both owl and capuchin monkeys, the specialized cell types in the eye all develop in the growing embryo from a single type of immature cell, called a retinal progenitor cell.

“These two species evolved about 15 million years ago from a common ancestor that had a diurnal eye,” Dyer said. “So, we believe that comparing how their eyes develop during embryonic growth could help us understand what evolutionary changes would be required to evolve from a diurnal to a nocturnal eye.”

The researchers hypothesized that only speeding up or slowing down the proliferation of the progenitor cells in the developing embryo might actually change the types of cells that they became. Thus, the evolutionary adaptation from diurnal to nocturnal eye might require no more than a modest genetic change that affected that timing.

Such a concept—that timing of cell proliferation might profoundly affect anatomy—has broader implications for understanding how the complex human brain evolved from simpler mammalian brains, Dyer said. In earlier comparative studies of the brains of more than 100 mammalian species, the study’s first author, Barbara Finlay, Ph.D., of Cornell University, Ithaca, New York, had found that those parts of the brain that are disproportionately larger in more complex brains develop last during embryonic growth.

“This finding suggested that changes in the growth of the brain during embryonic development could be a mechanism for evolutionary change,” Dyer said. “In other words, maybe the parts of the human brain that are bigger than in other mammals are bigger simply because the period of their growth is extended during fetal development.”

In their analysis, Dyer and his colleagues compared the timing of retinal progenitor cell proliferation into the different types of mature retinal cells in owl and capuchin monkey embryos. They found evidence that the extended period of progenitor cell proliferation in the owl monkey eye did, indeed, give rise to the different population of retinal cells that made the eye specially adapted for nocturnal vision.

They also found evidence that this extended period of proliferation also caused the size of the eye to be larger, which is necessary for the eye to accommodate the larger light-gathering and light-sensing structures necessary for nocturnal vision.

“The beauty of the evolutionary mechanism we have identified is that it enables the eye to almost toggle back and forth between a nocturnal and a diurnal structure,” Dyer said. “It is an elegant system that gives the eye a lot of flexibility in terms of specialization.”

More broadly, Dyer said, the finding offers support for the idea that important changes in brain structure can evolve via simple genetic changes that affect the timing of development of brain regions.

Other authors of this paper are Rodrigo Martins (St. Jude); Manoel da Silva Filho and Luiz Carlos Silveira (Universidade Federal do Pará, Brazil); Jose Augusto Muniz (Centro Nacional de Primatas, Brazil); and Constance Cepko (Harvard Medical School).

This research was supported in part by The National Science Foundation.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.

St. Jude Public Relations | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>