Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into mechanisms behind autoimmune diseases suggests a potential therapy

19.03.2012
Sanford-Burnham study shows how the breakup of 2 proteins interferes with the immune system and demonstrates that inhibiting 1 of the errant proteins restores proper function

Autoimmune diseases, such as Type I diabetes and rheumatoid arthritis, are caused by an immune system gone haywire, where the body's defense system assaults and destroys healthy tissues.

A mutant form of a protein called LYP has been implicated in multiple autoimmune diseases, but the precise molecular pathway involved has been unknown. Now, in a paper published March 18 in Nature Chemical Biology, researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) show how the errant form of LYP can disrupt the immune system. In doing so, they also found a potential new therapy for autoimmune diseases—a chemical compound that appears to inhibit this mutant protein.

T cells and autoimmune disease

In Caucasian populations, a mutated form of LYP (short for lymphoid tyrosine phosphatase) is the third most common single-gene cause of Type 1 diabetes. It ranks second for rheumatoid arthritis.

Researchers have known that LYP and another protein called CSK (C-terminal Src kinase) work cooperatively to keep the immune system's destructive T cells from being activated. Because the uncontrolled activation of T cells is a hallmark of many autoimmune diseases, the proper functioning of LYP with CSK is thought to keep T cells in check.

While the normal form of LYP can bind CSK, the disease-associated mutant LYP cannot. In the new study, Sanford-Burnham researcher Lutz Tautz, Ph.D. led an international group of scientists in showing that normal LYP can disassociate itself from CSK, which paradoxically makes LYP better at dampening the signals that activate T cells. These findings explain why the mutant form of LYP is better at limiting T cell activation than normal LYP.

"It's still a mystery how a protein that impairs T cell signaling causes autoimmunity," said Tautz. "In a simple model of autoimmunity, you would think the opposite."

One possible explanation, Tautz said, is that the mutant LYP weakens the action of regulatory T cells, which control the other type of T cells, the kind that causes autoimmunity.

"If you have regulatory T cells that are not as active because they have inhibited signaling, then they might not be able to do their job properly," Tautz said.

Towards new therapeutics

In their study, the researchers also screened 50,000 drug-like chemical compounds and found 33 that have a specific effect on LYP activity. One compound, called LTV-1, blocked the action of the mutant LYP protein in human T cells. In fact, under physiological conditions, LTV-1 is the most potent LYP inhibitor reported to date.

Tautz said he plans to next develop the LTV-1 compound further, in part by modifying it chemically to make it more effective as a drug. Tests in mice, however, could be problematic because a separate study recently showed that mice with a corresponding LYP mutation don't get sick at all.

Developing new treatments for autoimmune diseases would help millions of people. Overall, autoimmune diseases affect more than 25 million individuals in the United States alone. According to the U.S. Department of Health and Human Services, autoimmune diseases are a leading cause of death and disability.

This research was funded by the National Cancer Institute, the Norwegian Cancer Society, the American Cancer Society, the Oxnard Foundation, the Belgian Research National Scientific Fund, and Liege University.

The study was co-authored by Torkel Vang, Sanford-Burnham and University of Oslo; Wallace H. Liu, Sanford-Burnham; Laurence Delacroix, Liege University; Shuangding Wu, Sanford-Burnham; Stefan Vasile, Sanford-Burnham; Russell Dahl, Sanford-Burnham; Li Yang, Sanford-Burnham; Lucia Musumeci, Liege University; Dana Francis, Brown University; Johannes Landskron, University of Oslo; Kjetil Tasken, University of Oslo; Michel L. Tremblay, McGill University; Benedicte A. Lie, University of Oslo; Rebecca Page, Brown University; Tomas Mustelin, Sanford-Burnham; Souad Rahmouni, Liege University; Robert C. Rickert, Sanford-Burnham; and Lutz Tautz, Sanford-Burnham.

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. The Institute consistently ranks among the top five organizations worldwide for its scientific impact in the fields of biology and biochemistry (defined by citations per publication) and currently ranks third in the nation in NIH funding among all laboratory-based research institutes. Sanford-Burnham is a highly innovative organization, currently ranking second nationally among all organizations in capital efficiency of generating patents, defined by the number of patents issued per grant dollars awarded, according to government statistics.

Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a U.S.-based, non-profit public benefit corporation, with operations in San Diego (La Jolla) and Santa Barbara, California and Orlando (Lake Nona), Florida. For more information, please visit our website (www.sanfordburnham.org) or blog (http://beaker.sanfordburnham.org). You can also receive updates by following us on Facebook and Twitter.

Heather Buschman | EurekAlert!
Further information:
http://www.sanfordburnham.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>