Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into why locusts swarm

20.12.2011
Protein associated with learning implicated in causing grasshoppers to swarm

New research has found that a protein associated with learning and memory plays an integral role in changing the behaviour of locusts from that of harmless grasshoppers into swarming pests.

Desert Locusts are a species of grasshopper that have evolved a Jekyll-and-Hyde disposition to survive in their harsh environment. In their solitary phase, they avoid other locusts and occur in very low density. When the sporadic rains arrive and food is more plentiful, their numbers increase.

However, as the rains cease the locusts are driven onto dwindling patches of vegetation. This forced proximity to other locusts causes a little-understood transformation into their 'gregarious phase': they rapidly become very mobile, actively seek the company of other locusts, and thus form huge swarms that sweep the landscape in their search for food.

The new research, led by Dr Swidbert Ott from the University of Cambridge in collaboration with the University of Leuven, explored the role of a specific signalling protein in the locusts' brain, known as Protein Kinase A, in this transition. They found that this protein, which is typically associated with learning in other animals, has been co-opted to control the transition from solitary to gregarious behaviour in locusts.

They hypothesize that the process whereby locusts 'remember' the experience of crowding and modify their behaviour resembles learning. The 'learning' protein acts as a molecular switch in a social feedback loop, because gregarious behaviour ensures that crowding is maintained. The new results indicate that the biochemical mechanism that triggers locust swarming is similar to what enables humans and other animals to respond to social change.

Dr Ott added: "Learning is when you change your behaviour in the light of new experience, and this is what a locust needs to do when it gets caught up in the crowd. What is amazing is that the parallels don't just end there, they extend to the specific proteins that bring about the behavioural changes."

Desert locusts (Schistocera gregaria) are one of the most devastating insect pests, affecting 20% of the world's land surface through periodic swarms containing billions of locusts stretching over many square kilometres. Different species of locust continue to inflict severe economic hardship on large parts of Africa and China. In November 2008, swarms six kilometres long plagued Australia.

The research will be published this week in the journal PNAS.

For additional information please contact:
Genevieve Maul, Office of Communications, University of Cambridge
Tel: direct, 44-1223-765542, 44-1223-332300
Mob: 44-7774-017464
Email: Genevieve.maul@admin.cam.ac.uk
Notes to editors:
1. The paper 'A critical role for protein kinase A in the acquisition of gregarious behavior in Desert Loc' will be published on the PNAS Online Early Edition the week of December 19-23, 2011.

2. Images available upon request.

3. Dr Ott is supported by a Royal Society University Research Fellowship, and his laboratory is funded through grants from the Biotechnology and Biological Sciences Research Council and the Leverhulme Trust.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>