Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into the evolution of parasitism

22.09.2008
Molecular biologists have decoded the genome of a nematode living in beetles

Scientists at the Max Planck Institute for Developmental Biology, together with American colleagues, have decoded the genome of the Pristionchus pacificus nematode, thereby gaining insight into the evolution of parasitism.

In their work, which has been published in the latest issue of Nature Genetics, the scientists from Professor Ralf J. Sommer's department in Tübingen, Germany, have shown that the genome of the nematode consists of a surprisingly large number of genes, some of which have unexpected functions.

These include a number of genes that are helpful in breaking down harmful substances and for survival in a strange habitat: the Pristionchus uses beetles as a hideout and as means of transport, and feeds on the fungi and bacteria that spread out on their carcasses once they have died. It thus provides the clue to understanding the complex interactions between host and parasite. (Nature Genetics, Advance online publication, 21.09.2008, doi: 10.1038/ng.227)

With well over a million different species, nematodes are the largest group in the animal kingdom. The worms, usually only just one millimetre in length, are found on all continents and in all ecosystems on Earth. Some, as parasites, are major pathogens to humans, animals and plants. Within the group of nematodes, at least seven forms of parasitism have developed independently from one another. One member of the nematode group has acquired a certain degree of fame: due to its humble lifestyle, small size and quick breeding pattern, Caenorhabditis elegans is one of the most popular animals being used as models in biologists' laboratories. It was the first multicellular animal whose genome was completely decoded in 1998.

Ten years later, a group of scientists from the Max Planck Institute for Developmental Biology in Tübingen (Germany), together with researchers from the National Human Genome Research Institute in St. Louis (USA), have now presented the genome of another species of nematode, the model organism Pristionchus pacificus. Pristionchus species have carved out a very particular habitat for themselves: they live together with May beetles, dung beetles and potato beetles in order to feast on the bacteria and fungi that develop on the carcasses of these beetles after they have died. The nematodes therefore use the beetles as a mobile habitat that offers them shelter and food.

When they move from the land to the beetle, the nematodes' habitat changes dramatically. The nematodes have to protect themselves against toxic substances in their host, for example. The methods they employ to cope with the conditions in the beetle are worthy of closer attention, as this life form can possibly be regarded as the precursor to real parasites. At least, this is what researchers have suspected for a long time.

The sequencing of the genome of Pristionchus pacificus has now confirmed this suspicion: the genome, consisting of around 170 megabases, contains more than 23,500 protein-coding genes. By comparison, the model organism of Caenorhabditis elegans and the human parasite Brugia malayi (whose genome was sequenced in 2007) only have about 20,000 or 12,000 protein-coding genes, respectively. "The increase in Pristionchus is partly attributable to gene duplications," explained Ralf Sommer. "These include a number of genes that could be helpful for breaking down harmful substances and for survival in the complex beetle ecosystem."

Surprisingly, the Pristionchus genome also has a number of genes that are not known in Caenorhabditis elegans, although they have been found in plant parasites. Genes for cellulases - enzymes that are required to break down the cell walls of plants and microorganisms - have aroused particular interest among scientists. "The really exciting questions are still to come", said Sommer. "Using the sequence data, we can test how Pristionchus has adapted to its specific habitat. And this will undoubtedly give us new insight into the evolution of parasitism."

Original publication

Dieterich, C., Clifton, S. W., Schuster, L., Chinwalla, A., Delehaunty, K., Dinkelacker, I., Fulton, L., Fulton, R., Godfrey, J., Minx, P., Mitreva, M., Roeseler, W., Tian, H., Witte, H., Yang, S.-P., Wilson, R. K. & Sommer R. J. (2008): The Pristionchus pacificus genome provides a unique perspective on nematode lifestile and parasitism. Nature Genetics, Advance Online Publication, September 21, 2008, doi:10.1038/ng.227.

Contact

Prof. Dr. Ralf J. Sommer
Phone: +49 (0)7071-601-371
e-mail: Ralf.Sommer@tuebingen.mpg.de
Dr. Susanne Diederich (Press and Public Relations Department)
Phone: +49 (0)7071-601-333
e-mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 325 people and is located at the Max Planck Campus in Tuebingen, Germany. The Max Planck Institute for Developmental Biology is one of 82 research and associated institutes of the Max Planck Society for the Advancement of Science.

Dr. Susanne Diederich | idw
Further information:
http://eb.mpg.de
http://tuebingen.mpg.de

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>