Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into the evolution of parasitism

22.09.2008
Molecular biologists have decoded the genome of a nematode living in beetles

Scientists at the Max Planck Institute for Developmental Biology, together with American colleagues, have decoded the genome of the Pristionchus pacificus nematode, thereby gaining insight into the evolution of parasitism.

In their work, which has been published in the latest issue of Nature Genetics, the scientists from Professor Ralf J. Sommer's department in Tübingen, Germany, have shown that the genome of the nematode consists of a surprisingly large number of genes, some of which have unexpected functions.

These include a number of genes that are helpful in breaking down harmful substances and for survival in a strange habitat: the Pristionchus uses beetles as a hideout and as means of transport, and feeds on the fungi and bacteria that spread out on their carcasses once they have died. It thus provides the clue to understanding the complex interactions between host and parasite. (Nature Genetics, Advance online publication, 21.09.2008, doi: 10.1038/ng.227)

With well over a million different species, nematodes are the largest group in the animal kingdom. The worms, usually only just one millimetre in length, are found on all continents and in all ecosystems on Earth. Some, as parasites, are major pathogens to humans, animals and plants. Within the group of nematodes, at least seven forms of parasitism have developed independently from one another. One member of the nematode group has acquired a certain degree of fame: due to its humble lifestyle, small size and quick breeding pattern, Caenorhabditis elegans is one of the most popular animals being used as models in biologists' laboratories. It was the first multicellular animal whose genome was completely decoded in 1998.

Ten years later, a group of scientists from the Max Planck Institute for Developmental Biology in Tübingen (Germany), together with researchers from the National Human Genome Research Institute in St. Louis (USA), have now presented the genome of another species of nematode, the model organism Pristionchus pacificus. Pristionchus species have carved out a very particular habitat for themselves: they live together with May beetles, dung beetles and potato beetles in order to feast on the bacteria and fungi that develop on the carcasses of these beetles after they have died. The nematodes therefore use the beetles as a mobile habitat that offers them shelter and food.

When they move from the land to the beetle, the nematodes' habitat changes dramatically. The nematodes have to protect themselves against toxic substances in their host, for example. The methods they employ to cope with the conditions in the beetle are worthy of closer attention, as this life form can possibly be regarded as the precursor to real parasites. At least, this is what researchers have suspected for a long time.

The sequencing of the genome of Pristionchus pacificus has now confirmed this suspicion: the genome, consisting of around 170 megabases, contains more than 23,500 protein-coding genes. By comparison, the model organism of Caenorhabditis elegans and the human parasite Brugia malayi (whose genome was sequenced in 2007) only have about 20,000 or 12,000 protein-coding genes, respectively. "The increase in Pristionchus is partly attributable to gene duplications," explained Ralf Sommer. "These include a number of genes that could be helpful for breaking down harmful substances and for survival in the complex beetle ecosystem."

Surprisingly, the Pristionchus genome also has a number of genes that are not known in Caenorhabditis elegans, although they have been found in plant parasites. Genes for cellulases - enzymes that are required to break down the cell walls of plants and microorganisms - have aroused particular interest among scientists. "The really exciting questions are still to come", said Sommer. "Using the sequence data, we can test how Pristionchus has adapted to its specific habitat. And this will undoubtedly give us new insight into the evolution of parasitism."

Original publication

Dieterich, C., Clifton, S. W., Schuster, L., Chinwalla, A., Delehaunty, K., Dinkelacker, I., Fulton, L., Fulton, R., Godfrey, J., Minx, P., Mitreva, M., Roeseler, W., Tian, H., Witte, H., Yang, S.-P., Wilson, R. K. & Sommer R. J. (2008): The Pristionchus pacificus genome provides a unique perspective on nematode lifestile and parasitism. Nature Genetics, Advance Online Publication, September 21, 2008, doi:10.1038/ng.227.

Contact

Prof. Dr. Ralf J. Sommer
Phone: +49 (0)7071-601-371
e-mail: Ralf.Sommer@tuebingen.mpg.de
Dr. Susanne Diederich (Press and Public Relations Department)
Phone: +49 (0)7071-601-333
e-mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 325 people and is located at the Max Planck Campus in Tuebingen, Germany. The Max Planck Institute for Developmental Biology is one of 82 research and associated institutes of the Max Planck Society for the Advancement of Science.

Dr. Susanne Diederich | idw
Further information:
http://eb.mpg.de
http://tuebingen.mpg.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>