Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into the evolution of parasitism

22.09.2008
Molecular biologists have decoded the genome of a nematode living in beetles

Scientists at the Max Planck Institute for Developmental Biology, together with American colleagues, have decoded the genome of the Pristionchus pacificus nematode, thereby gaining insight into the evolution of parasitism.

In their work, which has been published in the latest issue of Nature Genetics, the scientists from Professor Ralf J. Sommer's department in Tübingen, Germany, have shown that the genome of the nematode consists of a surprisingly large number of genes, some of which have unexpected functions.

These include a number of genes that are helpful in breaking down harmful substances and for survival in a strange habitat: the Pristionchus uses beetles as a hideout and as means of transport, and feeds on the fungi and bacteria that spread out on their carcasses once they have died. It thus provides the clue to understanding the complex interactions between host and parasite. (Nature Genetics, Advance online publication, 21.09.2008, doi: 10.1038/ng.227)

With well over a million different species, nematodes are the largest group in the animal kingdom. The worms, usually only just one millimetre in length, are found on all continents and in all ecosystems on Earth. Some, as parasites, are major pathogens to humans, animals and plants. Within the group of nematodes, at least seven forms of parasitism have developed independently from one another. One member of the nematode group has acquired a certain degree of fame: due to its humble lifestyle, small size and quick breeding pattern, Caenorhabditis elegans is one of the most popular animals being used as models in biologists' laboratories. It was the first multicellular animal whose genome was completely decoded in 1998.

Ten years later, a group of scientists from the Max Planck Institute for Developmental Biology in Tübingen (Germany), together with researchers from the National Human Genome Research Institute in St. Louis (USA), have now presented the genome of another species of nematode, the model organism Pristionchus pacificus. Pristionchus species have carved out a very particular habitat for themselves: they live together with May beetles, dung beetles and potato beetles in order to feast on the bacteria and fungi that develop on the carcasses of these beetles after they have died. The nematodes therefore use the beetles as a mobile habitat that offers them shelter and food.

When they move from the land to the beetle, the nematodes' habitat changes dramatically. The nematodes have to protect themselves against toxic substances in their host, for example. The methods they employ to cope with the conditions in the beetle are worthy of closer attention, as this life form can possibly be regarded as the precursor to real parasites. At least, this is what researchers have suspected for a long time.

The sequencing of the genome of Pristionchus pacificus has now confirmed this suspicion: the genome, consisting of around 170 megabases, contains more than 23,500 protein-coding genes. By comparison, the model organism of Caenorhabditis elegans and the human parasite Brugia malayi (whose genome was sequenced in 2007) only have about 20,000 or 12,000 protein-coding genes, respectively. "The increase in Pristionchus is partly attributable to gene duplications," explained Ralf Sommer. "These include a number of genes that could be helpful for breaking down harmful substances and for survival in the complex beetle ecosystem."

Surprisingly, the Pristionchus genome also has a number of genes that are not known in Caenorhabditis elegans, although they have been found in plant parasites. Genes for cellulases - enzymes that are required to break down the cell walls of plants and microorganisms - have aroused particular interest among scientists. "The really exciting questions are still to come", said Sommer. "Using the sequence data, we can test how Pristionchus has adapted to its specific habitat. And this will undoubtedly give us new insight into the evolution of parasitism."

Original publication

Dieterich, C., Clifton, S. W., Schuster, L., Chinwalla, A., Delehaunty, K., Dinkelacker, I., Fulton, L., Fulton, R., Godfrey, J., Minx, P., Mitreva, M., Roeseler, W., Tian, H., Witte, H., Yang, S.-P., Wilson, R. K. & Sommer R. J. (2008): The Pristionchus pacificus genome provides a unique perspective on nematode lifestile and parasitism. Nature Genetics, Advance Online Publication, September 21, 2008, doi:10.1038/ng.227.

Contact

Prof. Dr. Ralf J. Sommer
Phone: +49 (0)7071-601-371
e-mail: Ralf.Sommer@tuebingen.mpg.de
Dr. Susanne Diederich (Press and Public Relations Department)
Phone: +49 (0)7071-601-333
e-mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 325 people and is located at the Max Planck Campus in Tuebingen, Germany. The Max Planck Institute for Developmental Biology is one of 82 research and associated institutes of the Max Planck Society for the Advancement of Science.

Dr. Susanne Diederich | idw
Further information:
http://eb.mpg.de
http://tuebingen.mpg.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>