Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Insight into the Cause of Common Dementia Found by Researchers at Mayo Clinic

Researchers at the Mayo Clinic campus in Florida have found a clue as to how some people develop a form of dementia that affects the brain areas associated with personality, behavior, and language.

In the Nov. 17 online issue of the American Journal of Human Genetics, the scientists write that they discovered a link between two proteins — progranulin and sortilin — they say might open new avenues for the treatment of frontotemporal lobar degeneration (FTLD), which occurs in the frontal lobe and temporal lobe of the brain.

This form of dementia, which is currently untreatable, generally occurs in younger people, compared to other common neurodegenerative disorders such as Alzheimer's disease.

"We now can look for a direct link between these two proteins and the development of FTLD," says the study's lead author, neuroscientist Rosa Rademakers, Ph.D. "The hope is that if we do find a strong association, it might be possible to manipulate levels of one or both of these proteins therapeutically."

Coincidentally, a research group from Yale University led by Stephen Strittmatter, M.D., Ph.D., has also pinpointed sortilin's association with progranulin — thus confirming Mayo's results. Their study is being published in Neuron, also on Nov. 17.

FTLD is a family of brain diseases that are believed to share some common molecular features. One is the presence of mutations in the gene that produces tau protein in neurons. The other is mutations in the progranulin gene that Mayo Clinic researchers and their colleagues discovered in 2006. They found that 5 to 10 percent of patients with FTLD have a mutation in this gene, and that these mutations lead to a substantial loss of normal progranulin protein production, and development of FTLD.

The protein made by the progranulin gene is found throughout the body, and performs different functions according to the type of tissue (organ) it is located in. But in the brain, it is believed to support neurons and keep them healthy.

Still, researchers do not really know how normal progranulin protein functions in the brain — what other proteins it interacts with — and so in this study they sought to uncover clues about progranulin biology by conducting a genome-wide association study (GWAS).

Based on their previous findings that a simple blood test is able to measure progranulin levels in plasma and could be used to identify patients with progranulin mutations, they tested blood from 518 healthy individuals in a GWAS to look for genetic variants that could explain some of the normal variability of progranulin levels in plasma. They found very strong association with two genetic variants in the same region of chromosome 1 and confirmed this finding in a second group of 495 healthy individuals.

By reviewing the scientific literature, they further ascertained that the same genetic variant found to be associated with plasma progranulin levels also affects the levels of the protein sortilin. Like progranulin, sortilin is found throughout the body and is involved in different tasks. In the brain, it is known to be important for survival of brain neurons.

"So, using a genetic approach, we identified a previously unknown connection between sortilin and progranulin," Dr. Rademakers says.

The researchers then studied the two proteins in cell culture and showed that the amount of sortilin in cells determines how much progranulin is taken inside or remains outside of a cell. "Our study shows that changes in the levels of sortilin result in different levels of progranulin available to cells. Given that we found FTLD patients often have less progranulin than they should, we believe that if you can manipulate levels of progranulin and/or sortilin in the brain, you might have a way to treat this disorder," says Dr. Rademakers.

"Our study and the study led by the Yale researchers describe completely independent and unbiased screens which both identified this protein sortilin as being important in the regulation of progranulin," Dr. Rademakers says. "This obviously opens new avenues for treatment for patients with progranulin mutations and perhaps dementia patients in general."

Researchers from the National Institutes of Health, University College London, the University of British Columbia, and Mayo Clinic in Minnesota also participated in this study.

The study was funded by the National Institutes of Health and the Consortium for Frontotemporal Dementia Research. The authors declare no conflicts of interest.

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers, and 50,100 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz.; and community-based providers in more than 70 locations in southern Minnesota., western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to For information about research and education, visit ( is available as a resource for your health stories.

Kevin Punsky | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>