New insight into how 'tidying up' enzymes work

When a tablet of medicine is taken, the active molecules get absorbed into the bloodstream through the gut and make their way around the body, including to the cells in which they are intended to act; however, it's important they don't stay in the body forever. Enzymes (biological catalysts) help break them down to facilitate excretion.

The cytochromes P450 are a very important class of these 'tidying up' enzymes which have evolved to deal with all 'foreign' compounds that do not get broken down as part of normal metabolism (that is, any compounds which are not proteins, carbohydrates or lipids).

Mainly situated in the liver, the P450 enzymes help remove drug molecules by adding oxygen to them. This process usually works smoothly, but for some molecules, it can lead to oxygenated variants that are toxic. Other molecules are also able to interfere with the normal function of the P450 enzymes.

For these reasons, it is important to be able to understand how a given new molecule, considered for use as a medicine, will react with these enzymes. The Bristol researchers aimed to provide this understanding by modeling the reaction mechanism for interaction between one specific drug (dextromethorphan, a component of some cough syrups) and one P450 variant.

Professor Jeremy Harvey said: “Our calculations showed that the outcome of the oxygen transfer process (that is, which part of dextromethorphan oxygen gets added to) is affected by three factors.

“The first is the way in which the molecule fits into the enzyme ('docking'). The second is the intrinsic ability of each part of the molecule to accept oxygen. The third is how much each competing oxygen-delivery process is compatible with the shape of the enzyme pocket where the reaction occurs.

“While these first two factors were already known, the third was not. This discovery can help pharmaceutical chemists design new drug molecules with a better understanding of how they will be broken down in the body.”

Media Contact

Hannah Johnson EurekAlert!

More Information:

http://www.bristol.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors