Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into how 'tidying up' enzymes work

29.03.2011
Working with Professor Jeremy Harvey and Professor Adrian Mulholland of Bristol's School of Chemistry, Dr Julianna Olah, an EU Marie Curie Fellow in Bristol at the time, studied a class of enzymes – cytochromes P450 – which play an important role in removing drug molecules from the body.

When a tablet of medicine is taken, the active molecules get absorbed into the bloodstream through the gut and make their way around the body, including to the cells in which they are intended to act; however, it's important they don't stay in the body forever. Enzymes (biological catalysts) help break them down to facilitate excretion.

The cytochromes P450 are a very important class of these 'tidying up' enzymes which have evolved to deal with all 'foreign' compounds that do not get broken down as part of normal metabolism (that is, any compounds which are not proteins, carbohydrates or lipids).

Mainly situated in the liver, the P450 enzymes help remove drug molecules by adding oxygen to them. This process usually works smoothly, but for some molecules, it can lead to oxygenated variants that are toxic. Other molecules are also able to interfere with the normal function of the P450 enzymes.

For these reasons, it is important to be able to understand how a given new molecule, considered for use as a medicine, will react with these enzymes. The Bristol researchers aimed to provide this understanding by modeling the reaction mechanism for interaction between one specific drug (dextromethorphan, a component of some cough syrups) and one P450 variant.

Professor Jeremy Harvey said: "Our calculations showed that the outcome of the oxygen transfer process (that is, which part of dextromethorphan oxygen gets added to) is affected by three factors.

"The first is the way in which the molecule fits into the enzyme ('docking'). The second is the intrinsic ability of each part of the molecule to accept oxygen. The third is how much each competing oxygen-delivery process is compatible with the shape of the enzyme pocket where the reaction occurs.

"While these first two factors were already known, the third was not. This discovery can help pharmaceutical chemists design new drug molecules with a better understanding of how they will be broken down in the body."

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>