Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects are scared to death of fish

28.10.2011
The mere presence of a predator causes enough stress to kill a dragonfly, even when the predator cannot actually get at its prey to eat it, say biologists at the University of Toronto.

“How prey respond to the fear of being eaten is an important topic in ecology, and we've learned a great deal about how these responses affect predator and prey interactions,” says Professor Locke Rowe, chair of the Department of Ecology and Evolutionary Biology (EEB) and co-principal investigator of a study conducted at U of T’s Koffler Scientific Reserve.

“As we learn more about how animals respond to stressful conditions – whether it's the presence of predators or stresses from other natural or human-caused disruptions – we increasingly find that stress brings a greater risk of death, presumably from things such as infections that normally wouldn't kill them,” says Rowe.

Shannon McCauley, a post-doctoral fellow, and EEB professors Marie-Josée Fortin and Rowe raised juvenile dragonfly larvae (Leucorrhinia intacta) in aquariums or tanks along with their predators. The two groups were separated so that while the dragonflies could see and smell their predators, the predators could not actually eat them.

“What we found was unexpected - more of the dragonflies died when predators shared their habitat,” says Rowe. Larvae exposed to predatory fish or aquatic insects had survival rates 2.5 to 4.3 times less than those not exposed.

In a second experiment, 11 per cent of larvae exposed to fish died as they attempted to metamorphose into their adult stage, compared to only two per cent of those growing in a fish-free environment. “We allowed the juvenile dragonflies to go through metamorphosis to become adult dragonflies, and found those that had grown up around predators were more likely to fail to complete metamorphosis successfully, more often dying in the process,” says Rowe.

The scientists suggest that their findings could apply to all organisms facing any amount of stress, and that the experiment could be used as a model for future studies on the lethal effects of stress.

The research is described in a paper titled “The deadly effects of ‘nonlethal’ predators”, published in Ecology and highlighted in Nature this week. It was supported by grants to Fortin and Rowe from the Canada Research Chairs program and the Natural Sciences and Engineering Research Council of Canada, and a post-doctoral fellowship awarded to McCauley.

Note to media: Visit http://www.artsci.utoronto.ca/main/media-releases/dragonfly-predator-prey-interactions for images and research papers associate with this media release.

MEDIA CONTACTS:

Marie-Josée Fortin
Department of Ecology and Evolutionary Biology
University of Toronto
mariejosee.fortin@utoronto.ca
416-946-7886
Shannon McCauley
Biological Sciences Department
California Polytechnic State University
smccaule@calpoly.edu
805-756-2498
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>