Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why We Need Insects--Even "Pesky" Ones

05.10.2012
Hard evidence of evolution: a five-year study shows that plants may quickly lose important traits through evolution soon after insects are removed from the environment

At first blush, many people would probably love to get rid of insects, such as pesky mosquitoes, ants and roaches. But a new study indicates that getting rid of insects could trigger some unwelcome ecological consequences, such as the rapid loss of desired traits in plants, including their good taste and high yields.

Specifically, the study--described in the Oct. 5, 2012 issue of Science and funded by the National Science Foundation showed that evening primroses grown in insecticide-treated plots quickly lost, through evolution, defensive traits that helped protect them from plant-eating moths. The protective traits lost included the production of insect-deterring chemicals and later blooms that gave evening primroses temporal distance from plant-eating larvae that peak early in the growing season.

These results indicate that once the plants no longer needed their anti-insect defenses, they lost those defenses. What's more, they did so quickly--in only three or four generations.

Anurag Agrawal, the leader of the study and a professor of ecology and evolutionary biology at Cornell University, explains, "We demonstrated that when you take moths out of the environment, certain varieties of evening primrose were particularly successful. These successful varieties have genes that produce less defenses against moths."

In the absence of insects, the evening primroses apparently stopped investing energy in their anti-insect defenses, and so these defenses disappeared through natural selection. Agrawal says that he was "very surprised" by how quickly this process occurred, and that such surprises, "tell us something about the potential speed and complexities of evolution. In addition, experiments like ours that follow evolutionary change in real-time provide definitive evidence of evolution."

Agrawal believes that his team's study results are applicable to many other insect-plant interactions beyond evening primroses and moths. Here's why: The ubiquitous consumption of plants by insects represents one of the dominant species interactions on Earth. With insect-plant relationships so important, it is widely believed that many plant traits originally evolved solely as defenses against insects. Some of these anti-insect plant defenses, such as the bitter taste of some fruits, are desirable.

"This experimental demonstration of how rapid evolution can shape ecological interactions supports the idea that we need to understand feedbacks between evolutionary and ecological processes in order to be able to predict how communities and ecosystems will respond to change," said Alan Tessier, a program director in NSF's Directorate for Biological Sciences.

"One of the things farmers are trying to do is breed agricultural crops to be more resistant to pests," said Agrawal. "Our study indicates that various genetic tradeoffs may make it difficult or impossible to maintain certain desired traits in plants that are bred for pest resistance."

In addition, oils produced by evening primroses have been used medicinally for hundreds of years and are beginning to be used as herbal remedies. Agrawal's insights about pests that attack these plants and about chemical compounds produced by these plants may ultimately be useful to the herbal and pharmaceutical industries.

Agrawal says that most previous real-time experiments on evolution have been conducted with bacteria in test tubes in laboratories. "One of things we were excited about is that we were able to repeat that kind of experiment in nature. You can expect to see a lot more of this kind of thing in future. We will keep our experiment running as a long-term living laboratory. "

More information about this study is available from a Cornell University press release.

-NSF-

Media Contacts
John Carberry, Cornell University (607) 255-5353 johncarberry@cornell.edu
Lily Whiteman, National Science Foundation (703) 292-8310 lwhitema@nsf.gov
Program Contacts
Alan Tessier, National Science Foundation (703) 292-7198 atessier@nsf.gov
Principal Investigators
Anurag Agrawal, Cornell University (607) 254-4255 aa337@cornell.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

Krishna Ramanujan | EurekAlert!
Further information:
http://www.cornell.edu
http://www.nsf.gov/news/news_summ.jsp?org=NSF&cntn_id=125636&preview=false

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>