Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects learn to choose the right mate

04.11.2010
Researchers from Lund University have shown that damselflies learn how to choose the right mate when two species co-exist locally. The choice of mate is not only a matter of genetic and instinctive behaviour, as has often been assumed for such small and short-lived creatures.

“It is fascinating to see that even small insects can learn these things”, says Professor Erik Svensson at the Department of Biology at Lund University.

Erik Svensson and his fellow researchers at Lund University have studied two co-existing species of damselfly (called “demoiselles”, belonging to the genus Calopteryx). Damselflies belong to a group of insects called odonates, together with the more familiar dragonflies. The researchers have investigated the mechanisms by which females choose males with whom to mate. The main difference between the two species in terms of appearance is the amount of black on the males’ wings. The females therefore have to keep an eye on the wing colour if they are to mate with males of their own species, i.e. the correct mates.

“If a female mates with a male of the wrong species, she essentially throws away her eggs, because mating between species leads to few offspring”, says Erik Svensson.

The researchers have studied the mating behaviour of the damselflies at several different locations in southern Sweden. At some of the sites the two species live alongside one another. At these sites, the females reject the males of the other species. However, at other sites, only one of the species is present. There, the females showed much greater interest in males of the other species when they were presented to the females in a field experiment. The females at these sites were clearly not aware of the fact that these novel males were the wrong species when they came into contact with them for the first time.

“It is interesting that the females at the different sites behave very differently, despite the fact that the different sites are not far from one another”, says Erik Svensson.

If the choice of mate was only a genetic (inherited) behaviour, the differences between the sites should not be as dramatic, because dispersal of individuals and the resulting gene flow between sites should erase such strong differences in mating behaviour. This prompted the researchers to carry out additional field experiments to investigate whether young and sexually inexperienced females learn to recognise males of their own species. Newly hatched and sexually inexperienced female damselflies were captured in the field and kept isolated in cages without any contact with males. When these virgin females then came into contact with males of both species for the first time, they showed equal interest in the males of both species. In another experiment, newly hatched females were again kept isolated in cages, but were able to see males of their own species for a while, yet without physical contact. When these females were subsequently exposed to physical contact with the males, they developed a stronger interest in their own species and showed a reduced interest in males of the other species.

“Our experiments clearly show that the choice of mate is learnt and not merely genetic. However, we don’t yet understand the learning mechanisms or exactly what happens during the short learning time of just a few hours”, says Erik Svensson. “We are planning further experiments in the future to investigate these learning mechanisms.”

Footnote: The species studied are the banded demoiselle (Calopteryx splendens) and the beautiful demoiselle (Calopteryx virgo).

For more information, please contact: Erik Svensson, Professor of Zooecology, Lund University:Tel. +46 (0)46 222 3819 or +46 (0)705 970403

Erik.Svensson@zooekol.lu.se

Pressofficer Megan Grindlay; megan.grindlay@fie.lu.se; +46-46 222 7308

Megan Grindlay | idw
Further information:
http://www.vr.se
http://onlinelibrary.wiley.com/doi/10.1111/j.1558-5646.2010.01085.x/abstract

Further reports about: dragonflies genus Calopteryx small insects

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>