Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects learn to choose the right mate

04.11.2010
Researchers from Lund University have shown that damselflies learn how to choose the right mate when two species co-exist locally. The choice of mate is not only a matter of genetic and instinctive behaviour, as has often been assumed for such small and short-lived creatures.

“It is fascinating to see that even small insects can learn these things”, says Professor Erik Svensson at the Department of Biology at Lund University.

Erik Svensson and his fellow researchers at Lund University have studied two co-existing species of damselfly (called “demoiselles”, belonging to the genus Calopteryx). Damselflies belong to a group of insects called odonates, together with the more familiar dragonflies. The researchers have investigated the mechanisms by which females choose males with whom to mate. The main difference between the two species in terms of appearance is the amount of black on the males’ wings. The females therefore have to keep an eye on the wing colour if they are to mate with males of their own species, i.e. the correct mates.

“If a female mates with a male of the wrong species, she essentially throws away her eggs, because mating between species leads to few offspring”, says Erik Svensson.

The researchers have studied the mating behaviour of the damselflies at several different locations in southern Sweden. At some of the sites the two species live alongside one another. At these sites, the females reject the males of the other species. However, at other sites, only one of the species is present. There, the females showed much greater interest in males of the other species when they were presented to the females in a field experiment. The females at these sites were clearly not aware of the fact that these novel males were the wrong species when they came into contact with them for the first time.

“It is interesting that the females at the different sites behave very differently, despite the fact that the different sites are not far from one another”, says Erik Svensson.

If the choice of mate was only a genetic (inherited) behaviour, the differences between the sites should not be as dramatic, because dispersal of individuals and the resulting gene flow between sites should erase such strong differences in mating behaviour. This prompted the researchers to carry out additional field experiments to investigate whether young and sexually inexperienced females learn to recognise males of their own species. Newly hatched and sexually inexperienced female damselflies were captured in the field and kept isolated in cages without any contact with males. When these virgin females then came into contact with males of both species for the first time, they showed equal interest in the males of both species. In another experiment, newly hatched females were again kept isolated in cages, but were able to see males of their own species for a while, yet without physical contact. When these females were subsequently exposed to physical contact with the males, they developed a stronger interest in their own species and showed a reduced interest in males of the other species.

“Our experiments clearly show that the choice of mate is learnt and not merely genetic. However, we don’t yet understand the learning mechanisms or exactly what happens during the short learning time of just a few hours”, says Erik Svensson. “We are planning further experiments in the future to investigate these learning mechanisms.”

Footnote: The species studied are the banded demoiselle (Calopteryx splendens) and the beautiful demoiselle (Calopteryx virgo).

For more information, please contact: Erik Svensson, Professor of Zooecology, Lund University:Tel. +46 (0)46 222 3819 or +46 (0)705 970403

Erik.Svensson@zooekol.lu.se

Pressofficer Megan Grindlay; megan.grindlay@fie.lu.se; +46-46 222 7308

Megan Grindlay | idw
Further information:
http://www.vr.se
http://onlinelibrary.wiley.com/doi/10.1111/j.1558-5646.2010.01085.x/abstract

Further reports about: dragonflies genus Calopteryx small insects

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>