Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects learn to choose the right mate

04.11.2010
Researchers from Lund University have shown that damselflies learn how to choose the right mate when two species co-exist locally. The choice of mate is not only a matter of genetic and instinctive behaviour, as has often been assumed for such small and short-lived creatures.

“It is fascinating to see that even small insects can learn these things”, says Professor Erik Svensson at the Department of Biology at Lund University.

Erik Svensson and his fellow researchers at Lund University have studied two co-existing species of damselfly (called “demoiselles”, belonging to the genus Calopteryx). Damselflies belong to a group of insects called odonates, together with the more familiar dragonflies. The researchers have investigated the mechanisms by which females choose males with whom to mate. The main difference between the two species in terms of appearance is the amount of black on the males’ wings. The females therefore have to keep an eye on the wing colour if they are to mate with males of their own species, i.e. the correct mates.

“If a female mates with a male of the wrong species, she essentially throws away her eggs, because mating between species leads to few offspring”, says Erik Svensson.

The researchers have studied the mating behaviour of the damselflies at several different locations in southern Sweden. At some of the sites the two species live alongside one another. At these sites, the females reject the males of the other species. However, at other sites, only one of the species is present. There, the females showed much greater interest in males of the other species when they were presented to the females in a field experiment. The females at these sites were clearly not aware of the fact that these novel males were the wrong species when they came into contact with them for the first time.

“It is interesting that the females at the different sites behave very differently, despite the fact that the different sites are not far from one another”, says Erik Svensson.

If the choice of mate was only a genetic (inherited) behaviour, the differences between the sites should not be as dramatic, because dispersal of individuals and the resulting gene flow between sites should erase such strong differences in mating behaviour. This prompted the researchers to carry out additional field experiments to investigate whether young and sexually inexperienced females learn to recognise males of their own species. Newly hatched and sexually inexperienced female damselflies were captured in the field and kept isolated in cages without any contact with males. When these virgin females then came into contact with males of both species for the first time, they showed equal interest in the males of both species. In another experiment, newly hatched females were again kept isolated in cages, but were able to see males of their own species for a while, yet without physical contact. When these females were subsequently exposed to physical contact with the males, they developed a stronger interest in their own species and showed a reduced interest in males of the other species.

“Our experiments clearly show that the choice of mate is learnt and not merely genetic. However, we don’t yet understand the learning mechanisms or exactly what happens during the short learning time of just a few hours”, says Erik Svensson. “We are planning further experiments in the future to investigate these learning mechanisms.”

Footnote: The species studied are the banded demoiselle (Calopteryx splendens) and the beautiful demoiselle (Calopteryx virgo).

For more information, please contact: Erik Svensson, Professor of Zooecology, Lund University:Tel. +46 (0)46 222 3819 or +46 (0)705 970403

Erik.Svensson@zooekol.lu.se

Pressofficer Megan Grindlay; megan.grindlay@fie.lu.se; +46-46 222 7308

Megan Grindlay | idw
Further information:
http://www.vr.se
http://onlinelibrary.wiley.com/doi/10.1111/j.1558-5646.2010.01085.x/abstract

Further reports about: dragonflies genus Calopteryx small insects

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>