Insecticidal toxin useless without 'friendly' bacteria accomplices

In a study published in the open access journal BMC Biology, researchers show that its effectiveness against a number of susceptible Lepidopteran species depends on the presence of the normally “friendly” bacteria that colonise their guts. Without these bacteria, the Bt toxin can become impotent in some species.

A team of researchers from the University of Wisconsin studied the effects of wiping out the commensal gut bacteria using antibiotics in six moth and butterfly species. In five of these species, the antibiotic treatment protected the insects against the lethal effects of the toxin, and in four of the five species, replacing the gut bacteria caused the toxin to become effective again. Graduate student Nichole Broderick said, “Our results suggest that Bt may kill some insects by causing otherwise benign gut bacteria to exert pathogenic effects. If the insects don't have these bacteria present, the toxin may be ineffective”.

According to the authors, “We've shown that larval enteric bacteria affect susceptibility to Bt, and the extent of this impact varies across butterfly and moth species. This does not exclude other factors, including the insect host, B. thuringiensis strain, and environmental conditions. In some cases these factors may interact, for example, host diet can alter the composition of enteric bacteria”.

They conclude, “From a pest management perspective, the ability of a non-specific enteric bacterium to restore B. thuringiensis-induced mortality of some Lepidopteran species may provide opportunities for increasing susceptibility or preventing resistance”.

Media Contact

Charlotte Webber EurekAlert!

More Information:

http://www.biomedcentral.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors