Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insect Gut Microbe with a Molecular Iron Reservoir

Max Planck researchers analyze the structure of an iron storage protein

Iron plays an important role in almost every life form. Low iron can lead to deficiency symptoms and reduced growth, whereas too much iron may harm biomolecules like DNA. Max Planck researchers from Jena and Tuebingen have now elucidated the spatial structure of a bacterial enzyme in Microbacterium arborescens which is able to accumulate several hundred iron ions in its center - depending on the iron supply situation in its environment: for example in the larval gut of the Beet Armyworm Spodoptera exigua.

Molecular structure of the enzyme N-acyl amino acid hydrolase (AAH) from Microbacterium arborescens: Representation of the protein surface with negative (red) and positive (blue) charges. The triangle marks the iron uptake pore. Kornelius Zeth, MPI Tuebingen

Molecular structure of the enzyme N-acyl amino acid hydrolase (AAH) from Microbacterium arborescens: Longitudinal section through the pore along with a representation of the iron uptake mechanism. Entering Fe(II)ions, surrounded by 6 water molecules (spatial representation in the box on the right below), are oxidized to Fe(III)ions with a simultaneous loss of their hydrate shell. The Fe(III) is stored as Fe2O3 in the center of the macromolecule. Kornelius Zeth, MPI Tuebingen

With its additional peroxidase activity the enzyme inhibits the occurrence of cell-damaging oxygen radicals. Moreover, it catalyzes the hydrolysis and formation of N-acyl glutamines (conjugates of the amino acid glutamine with fatty acids). The plant recognizes the larval pest with the help of these conjugates and initiates its chemical defense against invader. Structurally related enzymes are produced by other bacteria and are collectively termed as DNA protecting proteins under starvation (DPS). (The Journal of Biological Chemistry. DOI: 10.1074/jbc.M111.246108)

Microbes are omnipresent on earth. They are found as free-living microorganisms as well as in communities with other higher organisms. Thanks to modern biological techniques we are now able to address the complex communities and study the role of individual microorganisms and enzymes in more detail.

Microbacterium arborescens is a bacterium, which can be found in the guts of herbivorous caterpillars. The Department of Bioorganic Chemistry at the Max Planck Institute for Chemical Ecology studies interactions between insects and microorganisms which live in their digestive system. What is the advantage for both, insects and microbes? How strongly do they depend on each other? Do microbes play a role in mediating interactions between herbivorous insects and host plants? In the course of the experiments to answer these questions the scientists came across an enzyme they had isolated from M. arborescens, a resident in the gut of the Beet Armyworm Spodoptera exigua. It was called N-acyl amino acid hydrolase (AAH) because of its catalytic function: it catalyzes the synthesis and hydrolysis of conjugates of the amino acid glutamine with fatty acids. The N-acyl glutamines enter the infested plant via oral secretions and intestinal contents of the larvae and trigger the plant's defense responses. After cloning and sequencing the AAH encoding gene the scientists discovered an interesting result: AAH is closely related to proteins from other microorganisms: the "DNA protection during starvation (DPS)" proteins, which bind to DNA molecules and protect them by crystallization or by removal of dangerous OH• radicals. Jelena Pesek, PhD student in the Department of Bioorganic Chemistry at the institute, was surprised that the enzyme AAH from M. arborescens differs from DPS enzymes in other microbes to the effect that it additionally regulates the concentration of N-acyl glutamine (conjugates of glutamic acid with fatty acids) in the gut, which are important for molecular plant-insect interactions. Moreover, the enzyme is able to store Fe(III)ions in its center. If free Fe(II) is present, hydrogen peroxide (H2O2), which is synthesized by the insect's intestinal cells to fend off microorganisms, is converted to highly reactive hydroxyl radicals. The process is known as the Fenton's Reaction:

Fe2+ + H2O2 → Fe3+ + OH- + •HO (Fenton's Reaction)

The highly reactive hydroxyl radical •HO damages especially the DNA and thus causes dangerous mutations of the genetic material. In cooperation with Kornelius Zeth from the Max Planck Institute for Developmental Biology in Tuebingen the researchers succeeded in analyzing the iron transport mechanisms by means of crystallization and X-ray structure determination.

The protein consists of 12 identical subunits and has a molecular mass of 204 kDa - a considerable size for a single enzyme. The homo-oligomer is round and hollow inside. It can store up to 500 iron atoms as ferric iron (usually in the form of Fe2O3) in the hollow cavity. The iron transport into the cavity is unique: The spherical protein has four selective pores which provide access only to ferrous iron ions along with their hydration shells (six water molecules). At catalytic ferroxidase centers inside the cavity the Fe(II) is oxidized to Fe(III) with simultaneous reduction of the dangerous H2O2 to water (H2O).

The scientists assume that AAH ensures survival of M. arborescens in the larval gut, where conditions may be harsh and constantly changing depending on food quality. The enzyme is protective against oxidative stress, reducing the concentration of free Fe(II) by storing it and simultaneously neutralizing H2O2 as a source for cell damaging radicals. The evolutionary context of these processes as well as the formation and hydrolysis of N-acyl glutamines which are also catalyzed by AAH are still unknown. Because of their detergent character these compounds may help the larvae to better digest the plant food. In the course of evolution, attacked host plants may have "learned" to exploit the conjugates which enter the leaves during herbivory as a chemical alarm signal in order to activate their defense against the insect pest efficiently. [JWK/AO]

Original Publication:
Jelena Pesek, Rita Büchler, Reinhard Albrecht, Wilhelm Boland, Kornelius Zeth: Structure and Mechanism of Iron Translocation by a Dps Protein from Microbacterium arborescens. The Journal of Biological Chemistry 286. DOI: 10.1074/jbc.M111.246108
Further Information:
Prof. Dr. Wilhelm Boland, Tel.: 03641 - 57 1201,
Dr. Kornelius Zeth, Tel.: 07071-601323,
Picture Requests:
or contact Angela Overmeyer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany. Tel.: +49 (0)3641- 57 2110;

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht How Does Friendly Fire Happen in the Pancreas?
21.10.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>