Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Initial trials on new ovarian cancer tests exhibit extremely high accuracy

12.08.2010
Scientists at the Georgia Institute of Technology have attained very promising results on their initial investigations of a new test for ovarian cancer. Using a new technique involving mass spectrometry of a single drop of blood serum, the test correctly identified women with ovarian cancer in 100 percent of the patients tested. The results can be found online in the journal Cancer Epidemiology, Biomarkers, & Prevention Research.

“Because ovarian cancer is a disease of relatively low prevalence, it’s essential that tests for it be extremely accurate. We believe we may have developed such a test,” said John McDonald, chief research scientist at the Ovarian Cancer Institute (Atlanta) and professor of biology at Georgia Tech.

The measurement step in the test, developed by the research group of Facundo Fernandez, associate professor in the School of Chemistry and Biochemistry at Tech, uses a single drop of blood serum, which is vaporized by hot helium plasma. As the molecules from the serum become electrically charged, a mass spectrometer is used to measure their relative abundance. The test looks at the small molecules involved in metabolism that are in the serum, known as metabolites. Machine learning techniques developed by Alex Gray, assistant professor in the College of Computing and the Center for the Study of Systems Biology, were then used to sort the sets of metabolites that were found in cancerous plasma from the ones found in healthy samples. Then, McDonald’s lab mapped the results between the metabolites found in both sets of tissue to discover the biological meaning of these metabolic changes.

The assay did extremely well in initial tests involving 94 subjects. In addition to being able to generate results using only a drop of blood serum, the test proved to be 100 percent accurate in distinguishing sera from women with ovarian cancer from normal controls. In addition it registered neither a single false positive nor a false negative

The group is currently in the midst of conducting the next set of assays, this time with 500 patients.

“The caveat is we don’t currently have 500 patients with the same type of ovarian cancer, so we’re going to look at other types of ovarian cancer,” said Fernandez. “It’s possible that there are also signatures for other cancers, not just ovarian, so we’re also going to be using the same approach to look at other types of cancers. We’ll be working with collaborators in Atlanta and elsewhere.”

In addition to having a relatively low prevalence ovarian cancer is also asymptomatic in the early stages. Therefore, if further testing confirms the ability to accurately detect ovarian cancer by analyzing metabolites in the serum of women, doctors will be able detect the disease early and save many lives.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu/newsroom/release.html?nid=60398
http://www.gatech.edu

Further reports about: Cancer blood serum drop of blood metabolic changes metabolites ovarian cancer

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>