Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibitors Of Shuttle Molecule Show Promise In Acute Leukemia

20.06.2012
An estimated 10,200 Americans will die of acute myeloid leukemia (AML) in 2012, so new ways of treating the disease are needed.

This study uses a novel class of experimental drugs to halt a process that helps AML cells develop and survive.

The findings show that the agent is promising and should be considered for clinical trials testing.

A novel family of experimental agents that blocks a molecule from shuttling proteins out of the cell nucleus might offer a new treatment for people with acute leukemia, according to a study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The agents, called KPT-SINEs (selective inhibitors of nuclear export), target a transport protein called CRM1. Using acute myeloid leukemia (AML) cells and an animal model, the researchers showed that these agents inhibited leukemia-cell proliferation, arrested cell division, and induced cell death and differentiation.

In the animal model of AML, KPT-SINEs – described by the researchers as one of the most advanced agents in pre-clinical development – extended survival by 46 percent compared with controls.

KPT-SINEs were particularly effective when the leukemia cells also had mutations in the tumor-suppressor gene NPM1, which are present in about one-third of all adult AML.

The findings were published online in the journal Blood.

“Our study suggests that these agents might be an effective therapy for AML, particularly for patients with NPM1 mutations,” says principal investigator Dr. Ramiro Garzon, assistant professor of medicine and a researcher with the OSUCCC – James Molecular Biology and Cancer Genetics Program.

“We hope to start a phase I trial using one of these agents soon and to pursue further preclinical studies using this drug in combination with other current chemotherapies,” Garzon says.

CRM1 normally transports molecules out of the cell nucleus to the surrounding cytoplasm. In acute leukemia cells, the molecule carries tumor-suppressor, apoptotic and other protective proteins out of the nucleus, thereby contributing to leukemia development.

Karyopharm Therapeutics, Inc., developed KPT-SINEs. This study also showed that these agents:

Reduce the amount of CRM1 protein in the nucleus and increase the amount of tumor-suppressor protein such as p53 and NPM1 in AML cells.

Strongly down-regulate FLT3 and KIT, oncogenes that are commonly overexpressed in AML.

Increase survival in a leukemia animal model, with treated mice living an average of 39 days versus 27 days for untreated animals.

Funding from the NIH/National Cancer Institute (grant CA140158) and a Pelotonia Fellowship award supported this research.

Other researchers involved with this study were Parvathi Ranganathan, Xueyan Yu, Caroline Na, Ramasamy Santhanam, Alison Walker, Rebecca Klisovic, William Blum, Michael Caligiuri, Carlo M. Croce and Guido Marcucci of Ohio State University; and Sharon Shacham and Michael Kauffman of Karyopharm Therapeutics, Inc.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by
U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>