Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Inhibitors against Neuroblastoma

01.07.2013
Neuroblastoma is a malignant cancer, which occurs chiefly in infants. University of Würzburg scientists now present novel inhibitors able to suppress the growth of these tumors in the journal "Cancer Cell".
Neuroblastoma is one of the most common cancers in children up to one year of age. Neuroblastomas develop when certain nerve cells degenerate and form sizable lumps – in most cases in the abdomen of the child. About 130 cases of the disease are diagnosed each year in Germany.

In contrast to many other types of cancer, neuroblastomas sometimes heal spontaneously. In most patients, this type of cancer can be easily treated with conventional drugs. However, the chances of recovery and survival are slim in 20 percent of the cases. The reason: The tumors form metastases that don't much respond to conventional drugs.

Why the tumor becomes aggressive

"The most important factor for a poor prognosis is an amplification of the MYCN gene," says Professor Martin Eilers at the Biocenter of the University of Würzburg. This leads to an increased production of the MYCN protein, which is assumed to be responsible for the aggressive growth and the resistance to therapy of the tumors.

The MYCN protein stimulates cell growth. In normal cells, it can only be active for a short while, because it is quickly degraded. The situation is different in neuroblastomas: There, the protein is protected from fast degradation, because it is bound to a partner protein (Aurora-A). This was shown by Martin Eilers' study group in 2009.

How the novel inhibitors work

Together with an international team, the Würzburg study group has now made further progress in this research: They identified novel inhibitors that are able to disrupt the complex of Aurora-A and MYCN. If aggressive neuroblastomas are treated with these inhibitors, they cease to grow. At least, this is the result of tests in a mouse model.
"This might show the way to the development of new and better drugs against this aggressive tumor," says Eilers. According to the professor, other long-known inhibitors of the Aurora-A protein are already being tested in the first clinical trials in the USA.

The inhibitors of Aurora-A are promising for the treatment of other types of cancer as well: The fatal complex of Aurora-A and the MYCN protein is also present in particularly aggressive prostate carcinomas.

"Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma", Markus Brockmann, Evon Poon, Teeara Berry, Anne Carstensen, Hedwig E. Deubzer, Lukas Rycak, Yann Jamin, Khin Thway, Simon P. Robinson, Frederik Roels, Olaf Witt, Matthias Fischer, Louis Chesler, Martin Eilers, Cancer Cell, 20 June 2013, DOI 10.1016/j.ccr.2013.05.005

Contact person

Prof. Dr. Martin Eilers, Biocenter at the University of Würzburg, T +49 (0)931 888-4442, martin.eilers@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biocenter Cancer MYCN Small Molecule aurora-A nerve cell neuroblastoma types of cancer

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>