Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Inhibitors against Neuroblastoma

01.07.2013
Neuroblastoma is a malignant cancer, which occurs chiefly in infants. University of Würzburg scientists now present novel inhibitors able to suppress the growth of these tumors in the journal "Cancer Cell".
Neuroblastoma is one of the most common cancers in children up to one year of age. Neuroblastomas develop when certain nerve cells degenerate and form sizable lumps – in most cases in the abdomen of the child. About 130 cases of the disease are diagnosed each year in Germany.

In contrast to many other types of cancer, neuroblastomas sometimes heal spontaneously. In most patients, this type of cancer can be easily treated with conventional drugs. However, the chances of recovery and survival are slim in 20 percent of the cases. The reason: The tumors form metastases that don't much respond to conventional drugs.

Why the tumor becomes aggressive

"The most important factor for a poor prognosis is an amplification of the MYCN gene," says Professor Martin Eilers at the Biocenter of the University of Würzburg. This leads to an increased production of the MYCN protein, which is assumed to be responsible for the aggressive growth and the resistance to therapy of the tumors.

The MYCN protein stimulates cell growth. In normal cells, it can only be active for a short while, because it is quickly degraded. The situation is different in neuroblastomas: There, the protein is protected from fast degradation, because it is bound to a partner protein (Aurora-A). This was shown by Martin Eilers' study group in 2009.

How the novel inhibitors work

Together with an international team, the Würzburg study group has now made further progress in this research: They identified novel inhibitors that are able to disrupt the complex of Aurora-A and MYCN. If aggressive neuroblastomas are treated with these inhibitors, they cease to grow. At least, this is the result of tests in a mouse model.
"This might show the way to the development of new and better drugs against this aggressive tumor," says Eilers. According to the professor, other long-known inhibitors of the Aurora-A protein are already being tested in the first clinical trials in the USA.

The inhibitors of Aurora-A are promising for the treatment of other types of cancer as well: The fatal complex of Aurora-A and the MYCN protein is also present in particularly aggressive prostate carcinomas.

"Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma", Markus Brockmann, Evon Poon, Teeara Berry, Anne Carstensen, Hedwig E. Deubzer, Lukas Rycak, Yann Jamin, Khin Thway, Simon P. Robinson, Frederik Roels, Olaf Witt, Matthias Fischer, Louis Chesler, Martin Eilers, Cancer Cell, 20 June 2013, DOI 10.1016/j.ccr.2013.05.005

Contact person

Prof. Dr. Martin Eilers, Biocenter at the University of Würzburg, T +49 (0)931 888-4442, martin.eilers@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biocenter Cancer MYCN Small Molecule aurora-A nerve cell neuroblastoma types of cancer

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>