Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibitors of Important Tuberculosis Survival Mechanism Identified

18.09.2009
Compounds that kill dormant pathogen while sparing human cells could lead to new drugs

Attempts to eradicate tuberculosis (TB) are stymied by the fact that the disease-causing bacteria have a sophisticated mechanism for surviving dormant in infected cells.

Now, a team of scientists including researchers from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Stony Brook University (SBU), Weill Cornell Medical College, and The Rockefeller University has identified compounds that inhibit that mechanism — without damaging human cells. The results, described in the September 16, 2009, issue of Nature, include structural studies of how the inhibitor molecules interact with bacterial proteins, and could lead to the design of new anti-TB drugs.

“Our structural studies reveal the detailed mechanism by which these inhibitor molecules work, and explain the species selectivity that allows them to disable TB while largely sparing human cells,” said co-corresponding author Huilin Li, a Brookhaven biophysicist and associate professor at SBU.

Mycobacterium tuberculosis, the bacterium that causes TB, infects one person in three worldwide. Most infected people remain symptom-free because the bacterium is kept in check within immune system cells. These cells produce compounds such as nitric oxide, which scientists believe damage or destroy the bacteria’s proteins. If allowed to accumulate, the damaged proteins would kill the bacteria.

But TB bacteria have a sophisticated way to remove the damaged proteins — a protein-cleaving complex known as a proteasome — identified in earlier research by this same team.* By breaking down damaged proteins, the proteasome allows the bacteria to remain dormant, and possibly go on to cause active TB. Finding drugs to disable the proteasome would be a new way to fight TB.

In developing proteasome-inhibitor drugs, scientists face several hurdles. A significant one is the fact that human cells also possess proteasomes, which are essential to their survival. To be effective, the drugs would have to specifically target the TB proteasome without adversely affecting the human protein-cleanup complex.

Collaborating scientists led by Carl Nathan at Weill Cornell Medical College screened 20,000 compounds for TB proteasome inhibition activity. They identified and synthesized a group of inhibitors, which they then tested for their ability to inhibit the proteasome inside the mycobacteria. They also tested the compounds’ effect on monkey epithelial cells and human immune system cells in culture.

Two compounds proved to be effective against the TB bacteria while showing no apparent toxicity to mammalian cells. Additionally, the compounds exerted no antibacterial activity against a range of other bacteria, demonstrating that they appear to have a high degree of specificity for the TB microbes. Furthermore, the inhibition of the TB proteasome appears to be irreversible and about 1,000-fold more effective than the minor inhibition observed against human proteasomes.

To learn more about the inhibitory mechanism and the basis for its species selectivity, Li’s group determined the atomic-level crystal structures of TB proteasomes following exposure to the inhibitors. These studies were performed at the National Synchrotron Light Source (NSLS) — a source of intense x-ray, ultraviolet, and infrared light beams at Brookhaven Lab.

The structural studies revealed that the inhibitor molecules block the proteasome’s ability to degrade proteins in more than one way: by producing a direct chemical change to the proteasome active site, and by altering the conformation of the “pocket” into which protein fragments bind before being degraded.

“This conformational change constricts the pocket to the point that it cannot accommodate a protein substrate,” said Li. “The many amino acid residues of the TB proteasome involved in this conformational change, some far away from the active site, are different from those in human proteasomes. This might explain why such dramatic inhibition is not observed in the human proteasome, as the human enzyme may not be able to undergo the same structural change.”

A detailed understanding of the steps by which these inhibitors cause the conformational changes could therefore guide the design of the next generation of anti-TB drugs.

This research was funded by grants from the National Institutes of Health (NIH) and the Milstein Program in Chemical Biology of Infectious Diseases at Weill Cornell Medical College. The NSLS at Brookhaven Lab is supported by the Office of Basic Energy Sciences within the DOE Office of Science. For a full list of the collaborators and their contributions to this research, see the published paper.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=996

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>