Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Inhibiting microRNAs Through ANTAGOMIRs

An Experimental Strategy That Increases Vascularization And Reduces Infarct Size

What is a fruitful way to contain damages caused during an infarction? The answer is: trying to prevent/limit the action of damaging agents and promote the growth of new blood vessels that could help the recovery of damaged sites.

With this question (and answer) in mind, Stefanie Dimmeler Professor of Experimental Medicine and Head of the Molecular Cardiology at the University of Frankfurt and colleagues, set up their investigation on so-called microRNAs (miRNAs), small molecules involved in a number of critical processes including cardiovascular development, angiogenesis and inflammation.

During their study, the EVGN scientists identified a small group of promising miRNAs and developed an antagonist molecule called ANTAGOMIR that proved effective in blocking their noxious effects. These preliminary results were presented during the V Annual European Vascular Genomics Network Meeting held in Bad Hofgastein (Austria). Each year the Meeting convenes top scientists from all Europe and abroad, to discuss the state of the art and the most effective strategies and therapies in the field of Cardiovascular Disease (CVD).

miRNAs represent an attractive target for scientists who study CVD. Several investigations proved that they play a pivotal role, still to be defined, in cardiogenesis, cancer and in the regulation of complex processes. They are RNA molecules, but they do not carry any information useful for protein synthesis.

Their major role is to degrade specific mRNA molecules to prevent the assembly of selected proteins. Among their targets scientists have identified some proteins that promote angiogenesis (growth of blood vessels): when bound by miRNAs, these molecules are turned off and tissue damages can spread.

“The world of miRNAs is complex and articulated, so far several hundred molecules have been identified” underlined Stefanie Dimmeler in her presentation.

“Therefore we made a thorough screening and spotted a promising cluster in terms of activity on vessel remodelling and angiogenesis. When we checked for their presence we found that some of them were highly expressed in cells from patients with cardiac ischemia or coronary artery disease. This expression peaked at days 1-2 after ischemia. And other in vitro experiments suggested that these miRNAs hamper the repopulation of ischemic tissues by endothelial cells, a highly desirable event”.

So the scientists thought of developing an artificial molecule which was specular to the overall structure of some miRNAs, hence able to stick to them as the left and right hands of a person, in order to block their activity.

“We built an experimental ANTAGOMIR – said Dimmeler – in a way that it could adhere to several targets. The results were very promising, albeit still preliminary”. Some miRNAs were repressed – reported the researcher, and there was a good recovery of the heart functions in experimental laboratory models. “The extension of the infarcted site showed a significant reduction, paralleled by a restoration on the process of neovascularization”.

Now the German team plans to investigate in details if in the cluster analyzed there is one (or more) specific miRNA which is responsible of such effects, and to spot the molecular target(s) responsible for the therapeutic effects they observed.

For further information on this study please contact:
Cristina Serra
EVGN Press Office and Communication
Mobile: +39 338 4305210

Elena Bauer | alfa
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>