Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibiting microRNAs Through ANTAGOMIRs

28.11.2008
An Experimental Strategy That Increases Vascularization And Reduces Infarct Size

What is a fruitful way to contain damages caused during an infarction? The answer is: trying to prevent/limit the action of damaging agents and promote the growth of new blood vessels that could help the recovery of damaged sites.

With this question (and answer) in mind, Stefanie Dimmeler Professor of Experimental Medicine and Head of the Molecular Cardiology at the University of Frankfurt and colleagues, set up their investigation on so-called microRNAs (miRNAs), small molecules involved in a number of critical processes including cardiovascular development, angiogenesis and inflammation.

During their study, the EVGN scientists identified a small group of promising miRNAs and developed an antagonist molecule called ANTAGOMIR that proved effective in blocking their noxious effects. These preliminary results were presented during the V Annual European Vascular Genomics Network Meeting held in Bad Hofgastein (Austria). Each year the Meeting convenes top scientists from all Europe and abroad, to discuss the state of the art and the most effective strategies and therapies in the field of Cardiovascular Disease (CVD).

miRNAs represent an attractive target for scientists who study CVD. Several investigations proved that they play a pivotal role, still to be defined, in cardiogenesis, cancer and in the regulation of complex processes. They are RNA molecules, but they do not carry any information useful for protein synthesis.

Their major role is to degrade specific mRNA molecules to prevent the assembly of selected proteins. Among their targets scientists have identified some proteins that promote angiogenesis (growth of blood vessels): when bound by miRNAs, these molecules are turned off and tissue damages can spread.

“The world of miRNAs is complex and articulated, so far several hundred molecules have been identified” underlined Stefanie Dimmeler in her presentation.

“Therefore we made a thorough screening and spotted a promising cluster in terms of activity on vessel remodelling and angiogenesis. When we checked for their presence we found that some of them were highly expressed in cells from patients with cardiac ischemia or coronary artery disease. This expression peaked at days 1-2 after ischemia. And other in vitro experiments suggested that these miRNAs hamper the repopulation of ischemic tissues by endothelial cells, a highly desirable event”.

So the scientists thought of developing an artificial molecule which was specular to the overall structure of some miRNAs, hence able to stick to them as the left and right hands of a person, in order to block their activity.

“We built an experimental ANTAGOMIR – said Dimmeler – in a way that it could adhere to several targets. The results were very promising, albeit still preliminary”. Some miRNAs were repressed – reported the researcher, and there was a good recovery of the heart functions in experimental laboratory models. “The extension of the infarcted site showed a significant reduction, paralleled by a restoration on the process of neovascularization”.

Now the German team plans to investigate in details if in the cluster analyzed there is one (or more) specific miRNA which is responsible of such effects, and to spot the molecular target(s) responsible for the therapeutic effects they observed.

For further information on this study please contact:
Cristina Serra
EVGN Press Office and Communication
cristina.serra@ifom-ieo-campus.it
Mobile: +39 338 4305210

Elena Bauer | alfa
Further information:
http://www.evgn.org/home
http://www.ifom-ieo-campus.it

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>