Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibiting microRNAs Through ANTAGOMIRs

28.11.2008
An Experimental Strategy That Increases Vascularization And Reduces Infarct Size

What is a fruitful way to contain damages caused during an infarction? The answer is: trying to prevent/limit the action of damaging agents and promote the growth of new blood vessels that could help the recovery of damaged sites.

With this question (and answer) in mind, Stefanie Dimmeler Professor of Experimental Medicine and Head of the Molecular Cardiology at the University of Frankfurt and colleagues, set up their investigation on so-called microRNAs (miRNAs), small molecules involved in a number of critical processes including cardiovascular development, angiogenesis and inflammation.

During their study, the EVGN scientists identified a small group of promising miRNAs and developed an antagonist molecule called ANTAGOMIR that proved effective in blocking their noxious effects. These preliminary results were presented during the V Annual European Vascular Genomics Network Meeting held in Bad Hofgastein (Austria). Each year the Meeting convenes top scientists from all Europe and abroad, to discuss the state of the art and the most effective strategies and therapies in the field of Cardiovascular Disease (CVD).

miRNAs represent an attractive target for scientists who study CVD. Several investigations proved that they play a pivotal role, still to be defined, in cardiogenesis, cancer and in the regulation of complex processes. They are RNA molecules, but they do not carry any information useful for protein synthesis.

Their major role is to degrade specific mRNA molecules to prevent the assembly of selected proteins. Among their targets scientists have identified some proteins that promote angiogenesis (growth of blood vessels): when bound by miRNAs, these molecules are turned off and tissue damages can spread.

“The world of miRNAs is complex and articulated, so far several hundred molecules have been identified” underlined Stefanie Dimmeler in her presentation.

“Therefore we made a thorough screening and spotted a promising cluster in terms of activity on vessel remodelling and angiogenesis. When we checked for their presence we found that some of them were highly expressed in cells from patients with cardiac ischemia or coronary artery disease. This expression peaked at days 1-2 after ischemia. And other in vitro experiments suggested that these miRNAs hamper the repopulation of ischemic tissues by endothelial cells, a highly desirable event”.

So the scientists thought of developing an artificial molecule which was specular to the overall structure of some miRNAs, hence able to stick to them as the left and right hands of a person, in order to block their activity.

“We built an experimental ANTAGOMIR – said Dimmeler – in a way that it could adhere to several targets. The results were very promising, albeit still preliminary”. Some miRNAs were repressed – reported the researcher, and there was a good recovery of the heart functions in experimental laboratory models. “The extension of the infarcted site showed a significant reduction, paralleled by a restoration on the process of neovascularization”.

Now the German team plans to investigate in details if in the cluster analyzed there is one (or more) specific miRNA which is responsible of such effects, and to spot the molecular target(s) responsible for the therapeutic effects they observed.

For further information on this study please contact:
Cristina Serra
EVGN Press Office and Communication
cristina.serra@ifom-ieo-campus.it
Mobile: +39 338 4305210

Elena Bauer | alfa
Further information:
http://www.evgn.org/home
http://www.ifom-ieo-campus.it

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>