Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibiting key enzymes kills difficult tumor cells in mice

16.08.2011
Tumors that do not respond to chemotherapy are the target of a cancer therapy that prevents the function of two enzymes in mouse tumor cells, according to Pennsylvania medical researchers.

"We've known for well over a decade that when tumors become hypoxic they become resistant to chemotherapy and radiotherapy," said Wafik S. El-Deiry, M.D. Ph.D., American Cancer Society Research Professor, Rose Dunlap Professor and chief of hematology/oncology, Penn State College of Medicine. "This is a huge problem in the treatment of patients with cancer. As tumors progress, they have regions that are not well perfused with blood vessels and tumors become hypoxic."

A hypoxic tumor lacks oxygen because there are not enough blood vessels within the tumor to allow red blood cells to transport oxygen throughout the tumor.

El-Deiry and his team report in a recent issue of Cancer Research that the drug sangivamycin-like molecule 3 (SLM3) helps keep tumor cells from multiplying in lab mice.

Treating a tumor with SLM3 inhibits two kinase, or enzymes: GSK-3ß, which regulates cell growth and cell death, and CDK1, which regulates cell division and blood vessel growth. Tumor cells treated with SLM3 become more sensitive to chemotherapy and die, according to El-Deiry and his colleagues.

"If you just inhibit GSK-3ß, that may not be enough and not necessarily desirable," said El-Deiry, who is also the associate director for translational research, Cancer Institute. "But there's something fortuitous about the dual targeting of these two kinases, (GSK-3ß and CDK-1), with respect to cancer therapy. If you inhibit these two kinases, the dual inhibition works together to kill hypoxic tumor cells.

"While pure inhibition of GSK-3ß can promote cell proliferation, the combination of GSK-3ß and CDK-1 inhibition not only inhibits cell proliferation but also promotes cell death," El-Deiry added.

To find SLM3, the researchers screened a chemical library looking for molecules that induce apoptosis -- cell death -- in hypoxic tumor cells. SLM3 does that, and the researchers found eight molecules whose structures were similar.

SLM3 was the version that induced the most cell death in concert with TRAIL, a naturally occurring molecule in the body that tells a cell it is time to die. TRAIL sets a process in motion that targets and shuts down tumor cells and keeps them from spreading.

SLM3, a nucleoside analog, helps keep tumor cells from multiplying by stopping cells before they duplicate their DNA. Nucleosides are the building blocks of nucleic acids and molecules like ATP -- the energy source for the body. A nucleoside analog competes with ATP and inhibits kinases, like GSK-3ß and CDK1.

GSK-3ß helps regulate cell growth and cell death. CDK1 decreases the tumor's ability to divide and generate more blood vessels. SLM3 inhibits both these kinases.

"The bottom line is the molecules actually work to shrink tumors when these molecules are combined with chemo or TRAIL therapy," El-Deiry said. "We think that these are important observations that need to be tested further in the clinic."

Other Penn State College of Medicine researchers include Nathan G. Dolloff, assistant professor of hematology/oncology; Joshua E. Allen, graduate student, hematology/oncology; Yingqiu Y. Liu, research specialist; and David T. Dicker, technical specialist.

Also working on this research were Patrick A. Mayes, former graduate student, now at GlaxoSmithKline; Colin J. Daniel, graduate student, and Rosalie C. Sears, associate professor, molecular and medical genetics, Oregon Health Science University; J. Judy Liu and David I. H. Jee, graduate students, Harvard University; Lori S. Hart, research associate, and Jay F. Dorsey, assistant professor, radiation oncology, Emma E. Furth, professor of pathology and laboratory medicine and Peter S. Klein, associate professor of hematology/oncology, University of Pennsylvania; Kageaki Kuribayashi, Sapporo Medical University, Japan; and J. Martin Brown, professor of radiation oncology, Stanford University.

The National Institutes of Health supported this research.

Victoria M. Indivero | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>