Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibiting key enzymes kills difficult tumor cells in mice

16.08.2011
Tumors that do not respond to chemotherapy are the target of a cancer therapy that prevents the function of two enzymes in mouse tumor cells, according to Pennsylvania medical researchers.

"We've known for well over a decade that when tumors become hypoxic they become resistant to chemotherapy and radiotherapy," said Wafik S. El-Deiry, M.D. Ph.D., American Cancer Society Research Professor, Rose Dunlap Professor and chief of hematology/oncology, Penn State College of Medicine. "This is a huge problem in the treatment of patients with cancer. As tumors progress, they have regions that are not well perfused with blood vessels and tumors become hypoxic."

A hypoxic tumor lacks oxygen because there are not enough blood vessels within the tumor to allow red blood cells to transport oxygen throughout the tumor.

El-Deiry and his team report in a recent issue of Cancer Research that the drug sangivamycin-like molecule 3 (SLM3) helps keep tumor cells from multiplying in lab mice.

Treating a tumor with SLM3 inhibits two kinase, or enzymes: GSK-3ß, which regulates cell growth and cell death, and CDK1, which regulates cell division and blood vessel growth. Tumor cells treated with SLM3 become more sensitive to chemotherapy and die, according to El-Deiry and his colleagues.

"If you just inhibit GSK-3ß, that may not be enough and not necessarily desirable," said El-Deiry, who is also the associate director for translational research, Cancer Institute. "But there's something fortuitous about the dual targeting of these two kinases, (GSK-3ß and CDK-1), with respect to cancer therapy. If you inhibit these two kinases, the dual inhibition works together to kill hypoxic tumor cells.

"While pure inhibition of GSK-3ß can promote cell proliferation, the combination of GSK-3ß and CDK-1 inhibition not only inhibits cell proliferation but also promotes cell death," El-Deiry added.

To find SLM3, the researchers screened a chemical library looking for molecules that induce apoptosis -- cell death -- in hypoxic tumor cells. SLM3 does that, and the researchers found eight molecules whose structures were similar.

SLM3 was the version that induced the most cell death in concert with TRAIL, a naturally occurring molecule in the body that tells a cell it is time to die. TRAIL sets a process in motion that targets and shuts down tumor cells and keeps them from spreading.

SLM3, a nucleoside analog, helps keep tumor cells from multiplying by stopping cells before they duplicate their DNA. Nucleosides are the building blocks of nucleic acids and molecules like ATP -- the energy source for the body. A nucleoside analog competes with ATP and inhibits kinases, like GSK-3ß and CDK1.

GSK-3ß helps regulate cell growth and cell death. CDK1 decreases the tumor's ability to divide and generate more blood vessels. SLM3 inhibits both these kinases.

"The bottom line is the molecules actually work to shrink tumors when these molecules are combined with chemo or TRAIL therapy," El-Deiry said. "We think that these are important observations that need to be tested further in the clinic."

Other Penn State College of Medicine researchers include Nathan G. Dolloff, assistant professor of hematology/oncology; Joshua E. Allen, graduate student, hematology/oncology; Yingqiu Y. Liu, research specialist; and David T. Dicker, technical specialist.

Also working on this research were Patrick A. Mayes, former graduate student, now at GlaxoSmithKline; Colin J. Daniel, graduate student, and Rosalie C. Sears, associate professor, molecular and medical genetics, Oregon Health Science University; J. Judy Liu and David I. H. Jee, graduate students, Harvard University; Lori S. Hart, research associate, and Jay F. Dorsey, assistant professor, radiation oncology, Emma E. Furth, professor of pathology and laboratory medicine and Peter S. Klein, associate professor of hematology/oncology, University of Pennsylvania; Kageaki Kuribayashi, Sapporo Medical University, Japan; and J. Martin Brown, professor of radiation oncology, Stanford University.

The National Institutes of Health supported this research.

Victoria M. Indivero | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>