Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibiting fatty acids in immune cells decreases atherosclerosis risk

26.07.2010
Scientists at Washington University School of Medicine in St. Louis have found a way to significantly reduce atherosclerosis in mice that does not involve lowering cholesterol levels or eliminating other obesity-related problems.
They report their findings in the July 23 issue of the Journal of Biological Chemistry.

Early areas of atherosclerosis (seen using a red stain that identifies fat) line the artery walls of a mouse fed a high-fat diet (top image), while much less disease is seen in a mouse fed a high-fat diet but unable to make fatty acid synthase in macrophages (bottom image).
Washington University School of Medicine
Atherosclerosis is the process through which fatty substances, such as cholesterol and cellular waste products accumulate in the lining of arteries. Those buildups, called plaques, reduce blood flow through the artery and can contribute to heart attack, stroke and even gangrene. It is common in individuals with obesity-related problems such as high blood pressure, high cholesterol and diabetes.

In this study, the research team inhibited atherosclerosis in mice by interfering with production of a substance called fatty acid synthase. This enzyme converts dietary sugars into fatty acids in the liver, where it plays an important role in energy metabolism. But fatty acids also are involved in atherosclerosis.

“The plaques that clog arteries contain large amounts of fatty acids,” says senior investigator Clay F. Semenkovich, MD. “We engineered mice that are unable to make fatty acid synthase in one of the major cell types that contribute to plaque formation. On a standard Western diet high in fat, the mice had less atherosclerosis than their normal littermates."

Animals can’t survive without fatty acid synthase, so mice in this study were able to make the substance in most of their tissues. They couldn’t manufacture it, however, in macrophages, a type of white blood cell that surrounds and kills invading microorganisms, removes dead cells from the body and stimulates the action of other immune cells. Macrophages are dispatched in response to injury, infection and inflammation.


Semenkovich
Atherosclerosis is the most common cause of heart disease, which is the leading cause of death in the United States. Semenkovich, the Herbert S. Gasser Professor and chief of the Division of Endocrinology, Metabolism and Lipid Research, says doctors tend to concentrate on treating the surrounding risk factors related to atherosclerosis, such as diabetes and high blood pressure, but he says the blockages themselves cause the most serious, life-threatening problems.

“With the current epidemic of obesity and diabetes, people sometimes forget that it’s the blockages in the arteries that really kill people,” he says. “We’ve made progress using statin drugs, for example, that lower cholesterol and fight plaque buildup, but a lot of people who take statins still die from cardiovascular disease. We need better therapies."

These mouse experiments suggest targeting fatty acid synthase in macrophages may provide a potential treatment strategy for humans. The researchers identified factors in the fatty acid pathway that seem to be capable of preventing plaques from blocking arteries in mice. He says those substances – LXR-alpha and ABCA1 – eventually may become drug targets.

“It may be possible, for example, to take macrophages out of humans, inhibit fatty acid synthase in those cells, and then infuse the macrophages back into the same person,” he says. “From what we’ve observed in mice, we would hypothesize that approach might prevent or interfere with plaque buildup in people."

Inhibiting fatty acid synthase in macrophages may not keep blood vessels clean forever, according to Semenkovich, but he says it could lower the risk of heart attacks and strokes while people are making lifestyle changes in order to lose weight, gain control of blood sugar levels or lower triglycerides and cholesterol.

“This discovery allows us to separate atherosclerosis from associated conditions such as diabetes and high cholesterol,” he says. “In fact, in the mice without fatty acid synthase in their macrophage cells, there were no effects on diabetes. Cholesterol in the blood remained the same. But there were fewer blockages in arteries. If a similar approach worked for humans, it could help prevent heart attacks and strokes and give people a chance to get healthier by losing weight and lowering cholesterol."

Schneider JG, Yang Z, Chakravarthy MV, Lodhi IJ, Wei X, Turk J, Semenkovich CF. Macrophage fatty acid synthase deficiency decreases diet-induced atherosclerosis. Journal of Biological Chemistry, July 23, 2010. Online at http://www.jbc.org/cgi/doi/10.1074/jbc.M110.100321

This work was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases and National Heart, Lung, and Blood Institute of the National Institutes of Health, and by Fellowship Awards from the American Diabetes Association and the American Heart Association.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>