Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibiting fatty acids in immune cells decreases atherosclerosis risk

26.07.2010
Scientists at Washington University School of Medicine in St. Louis have found a way to significantly reduce atherosclerosis in mice that does not involve lowering cholesterol levels or eliminating other obesity-related problems.
They report their findings in the July 23 issue of the Journal of Biological Chemistry.

Early areas of atherosclerosis (seen using a red stain that identifies fat) line the artery walls of a mouse fed a high-fat diet (top image), while much less disease is seen in a mouse fed a high-fat diet but unable to make fatty acid synthase in macrophages (bottom image).
Washington University School of Medicine
Atherosclerosis is the process through which fatty substances, such as cholesterol and cellular waste products accumulate in the lining of arteries. Those buildups, called plaques, reduce blood flow through the artery and can contribute to heart attack, stroke and even gangrene. It is common in individuals with obesity-related problems such as high blood pressure, high cholesterol and diabetes.

In this study, the research team inhibited atherosclerosis in mice by interfering with production of a substance called fatty acid synthase. This enzyme converts dietary sugars into fatty acids in the liver, where it plays an important role in energy metabolism. But fatty acids also are involved in atherosclerosis.

“The plaques that clog arteries contain large amounts of fatty acids,” says senior investigator Clay F. Semenkovich, MD. “We engineered mice that are unable to make fatty acid synthase in one of the major cell types that contribute to plaque formation. On a standard Western diet high in fat, the mice had less atherosclerosis than their normal littermates."

Animals can’t survive without fatty acid synthase, so mice in this study were able to make the substance in most of their tissues. They couldn’t manufacture it, however, in macrophages, a type of white blood cell that surrounds and kills invading microorganisms, removes dead cells from the body and stimulates the action of other immune cells. Macrophages are dispatched in response to injury, infection and inflammation.


Semenkovich
Atherosclerosis is the most common cause of heart disease, which is the leading cause of death in the United States. Semenkovich, the Herbert S. Gasser Professor and chief of the Division of Endocrinology, Metabolism and Lipid Research, says doctors tend to concentrate on treating the surrounding risk factors related to atherosclerosis, such as diabetes and high blood pressure, but he says the blockages themselves cause the most serious, life-threatening problems.

“With the current epidemic of obesity and diabetes, people sometimes forget that it’s the blockages in the arteries that really kill people,” he says. “We’ve made progress using statin drugs, for example, that lower cholesterol and fight plaque buildup, but a lot of people who take statins still die from cardiovascular disease. We need better therapies."

These mouse experiments suggest targeting fatty acid synthase in macrophages may provide a potential treatment strategy for humans. The researchers identified factors in the fatty acid pathway that seem to be capable of preventing plaques from blocking arteries in mice. He says those substances – LXR-alpha and ABCA1 – eventually may become drug targets.

“It may be possible, for example, to take macrophages out of humans, inhibit fatty acid synthase in those cells, and then infuse the macrophages back into the same person,” he says. “From what we’ve observed in mice, we would hypothesize that approach might prevent or interfere with plaque buildup in people."

Inhibiting fatty acid synthase in macrophages may not keep blood vessels clean forever, according to Semenkovich, but he says it could lower the risk of heart attacks and strokes while people are making lifestyle changes in order to lose weight, gain control of blood sugar levels or lower triglycerides and cholesterol.

“This discovery allows us to separate atherosclerosis from associated conditions such as diabetes and high cholesterol,” he says. “In fact, in the mice without fatty acid synthase in their macrophage cells, there were no effects on diabetes. Cholesterol in the blood remained the same. But there were fewer blockages in arteries. If a similar approach worked for humans, it could help prevent heart attacks and strokes and give people a chance to get healthier by losing weight and lowering cholesterol."

Schneider JG, Yang Z, Chakravarthy MV, Lodhi IJ, Wei X, Turk J, Semenkovich CF. Macrophage fatty acid synthase deficiency decreases diet-induced atherosclerosis. Journal of Biological Chemistry, July 23, 2010. Online at http://www.jbc.org/cgi/doi/10.1074/jbc.M110.100321

This work was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases and National Heart, Lung, and Blood Institute of the National Institutes of Health, and by Fellowship Awards from the American Diabetes Association and the American Heart Association.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Hot vibrating gases under the electron spotlight
12.12.2017 | Institute of Industrial Science, The University of Tokyo

nachricht Plankton swim against the current
12.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>