Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared spectroscopy: Interaction between proteins and pharmaceuticals in atomic detail

03.09.2012
Anchored proteins
RUB-Biophysicists use surface-sensitive spectroscopy

RUB-Researchers from the Chair for Biophysics have developed a new method for the detailed study of the interaction between pharmaceuticals and their target proteins.

The pharmaceutical industry has already taken notice of the new infrared spectroscopy technique; the method is supposed to be implemented to investigate pharmacological agent-protein interactions in the EU project K4DD, which is supported by various major European pharmaceutical companies. “We now have a tool in our hands with which we can research the dynamics of pharmacologically interesting proteins in atomic detail,” Prof. Dr. Klaus Gerwert said.

“We want to undertake a targeted screening of substance libraries to look for potential pharmacological agents.” PD Dr. Carsten Kötting added that “with our technique future pharmaceuticals can be more closely tailored to illness-causing proteins, which can noticeably reduce the negative side effects of these drugs.” They described the new method together with Dr. Jörn Güldenhaupt and Philipp Pinkerneil in the scientific journal “ChemPhysChem,” which dedicated its cover story to this topic.

The new method: from three to one

With infrared difference spectroscopy, researchers follow dynamic processes in proteins. For a long time, these processes could only be observed in light-activated proteins, but not in proteins that are activated by binding with ligands – but this is usually how many illness relevant molecules are activated. To analyze the dynamics of such proteins, researchers have to fasten them to the measurement surface and pour a pharmacological-substance over them; the proteins can then interact with and be activated by this substance. Even though this binding technique is possible, it cannot be used for all proteins. The RUB-Team worked around this problem by combining infrared (IR) spectroscopy with a surface-sensitive technique (attenuated total reflectance) and so-called “His-Tagging” (anchoring proteins to the measurement surface).

Attenuated total reflectance: bringing the infrared beam to all proteins

In conventional IR spectroscopy, an infrared beam is passed through a liquid sample; part of the light is absorbed by the proteins, which allows researchers to draw conclusions about their structure. The RUB-researchers beamed the infrared light through a germanium crystal, on whose surface proteins were anchored. At the boundaries of the crystal the light is reflected over and over, thereby spreading throughout the crystal (attenuated total reflectance). During this process, some of the light waves leave the crystal and reach the proteins that are fastened to its surface. A similar technique, the Surface Plasmon Resonance, is the standard for use in the pharmaceutical industry, but does not have the atomic resolution capabilities of the new technique.
Part of the chain: the His-Tag

This bonding of the proteins to the crystal succeeds through usage of the His-Tag, a simple amino acid chain, which is commonly attached to proteins today to enable their biochemical study – it is essentially a universal adapter. Through the His-Tag the RUB-researchers were able to anchor the protein to the germanium crystal. As a result the molecules were firmly bound to the measurement surface, which transmits the infrared light to the proteins by the process of attenuated total reflectance. The big advantage: an abundance of proteins are already fitted with the His-Tag; therefore examining them with the new method is unproblematic. All other proteins to which a His-Tag is attached can now also be accessed by IR spectroscopy. “This will help answer a multitude of biological and medical questions,” Gerwert said.

Establishment of the new method with the switch protein Ras
The RUB-Team first tried their new method on the switch protein Ras, the central on/off switch for cell growth. Defect, or oncogenic Ras, is one of the cells most frequently responsible for causing cancer. The researchers succeeded in fastening Ras to the measurement surface with the His-Tag, and then activating the Ras by binding it to a ligand. “The technique is so sensitive that we could resolve the signal of a five nanometer thick protein layer. That’s about 1/10000 of the diameter of a human hair,” RUB-researcher Dr. Jörn Güldenhaupt, who contributed significantly to the development of the new method, said. Even the smallest structural changes during the Ras protein’s switch from its “on” to its “off” state were recognized with the “protein-nanoscope.”

Project funding

Funding for the project came from the Protein Research Department at the RUB, from the state of NRW in the framework of the Center for Vibrational Microscopy (CVM) and from the SFB 642, “GTP and ATP Dependent Membrane Processes,” whose speaker is Prof. Gerwert.

Bibliographic record

P. Pinkerneil, J. Güldenhaupt, K. Gerwert, C. Kötting (2012): Surface-attached polyhistidine-tag proteins characterized by FTIR difference spectroscopy, ChemPhysChem, doi: 10.1002/cphc.201200358

Figrue online

A figure illustrating the new method can be downloaded from the following website:

http://aktuell.ruhr-uni-bochum.de/pm2012/pm00284.html.en

Further Information

Prof. Dr. Klaus Gerwert, Chair for Biophysics, Faculty for Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Phone: +49/234/32-24461

klaus.gerwert@bph.ruhr-uni-bochum.de

Click for more

Biophysics at RUB
http://www.bph.ruhr-uni-bochum.de/index_en.htm

Full text article
http://onlinelibrary.wiley.com/doi/10.1002/cphc.201200358/full

Editorial Journalists: Charlotte Ziob/Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>