Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information processing in Drosophila: Initiation of a EU research network for doctoral candidates

16.03.2012
Neurobiology division of the Institute of Zoology of Mainz University is now part of the EU-funded pan-European FLiACT initial training network on systemic neuroscience

Eight European research institutes, including Johannes Gutenberg University Mainz (JGU) in Germany, and three commercial partners have joined forces in an EU project to provide young academics with an outstanding research environment in the field of systemic neuroscience. The project by the name of FLiACT has been awarded four years of EU-funding through the Marie Curie Actions program.


The image taken from a high-speed video shows a fruit fly Drosophila of about 2.5 millimeters in body length engaged in climbing over a barely surmountable gap.
©: Strauss lab

The participating partners are working on various complementary aspects of neuroscience, ranging from molecular genetics to bioengineering. The nervous system of the fruit fly, Drosophila melanogaster, will be serving as the research focus. The objective of FLiACT is to create a unique training network in order to develop new research sectors and promote collaboration among research institutes. The neurobiology work group headed by Professor Dr. Roland Strauss at the Institute of Zoology at Mainz University is also part of the network.

Discovering how the brain functions represents one of the greatest challenges of current research. In order to understand cognitive processes in the brain, it is necessary to analyze its activity at various levels, beginning with its genetic building plan and covering biochemical processes and neural circuits as well as the characteristics of certain types of behavior. Over the last decades, the fruit fly Drosophila has become the model organism used by scientists to investigate the means by which sensory information is gathered, processed, and stored, and behavioral output is generated. Drosophila has already proven useful when it comes to the investigation of the genetic causes of neurodegenerative disorders, such as Alzheimer's disease. The human brain has a million times more neurons than that of Drosophila, but because both share common principles, it is possible to understand complex brain functions by studying the miniature fly brain. Thanks to FLiACT, twelve young European researchers now have the opportunity of embarking on a doctoral dissertation project that will look at cutting-edge aspects of neuroscience.

The participants will undertake a considerable part of their work in cooperation with the partner institutions, for example as visiting scientists. They will receive training in interdisciplinary workshops to enable them to acquire skills in innovative technologies in the areas of neurogenetics, neuroanatomy, neuroimaging and behavior analysis, while the commercial project partners will provide them with insight into such aspects as technology transfer and project management. There are also opportunities for cooperation with the Janelia Farm Research Campus, a research institute of the Howard Hughes Medical Institute in the United States of America.

The research group led by Professor Dr. Roland Strauss at Mainz University will be contributing to the project with its work on the biochemistry of learning and the underlying neuronal networks. The group studies the persistence of memory – from memories that are retained for a few seconds only to those that last an entire lifetime. "Improvements in motor skills acquired by repetitive training, for example, can enhance the climbing success of a fly for its entire lifetime," explains Strauss. But the insects are also capable of remembering the location of an object and of using it as a spatial orientation aid. Studies conducted in Mainz have shown that flies can remember the location of this object for several seconds after it has been removed from their environment. The researchers were able to pinpoint a small group of neurons that are responsible for this memory-based orientation ability. "The new EU network will help promote cooperation with other European research groups and thus lead to a better understanding of how the brain processes and retains information."

The FLiACT project (Systems neuroscience of Drosophila: from genes to circuits to behaviors) is an Initial Training Network (ITN) sponsored by the European Union. It is being coordinated by Dr. Matthieu Louis of the Center for Genomic Regulation in Barcelona, Spain.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15126.php
http://www.fliact.eu/
http://www.kowi.de/en/desktopdefault.aspx/tabid-153/490_read-258/

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>