Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information processing in Drosophila: Initiation of a EU research network for doctoral candidates

16.03.2012
Neurobiology division of the Institute of Zoology of Mainz University is now part of the EU-funded pan-European FLiACT initial training network on systemic neuroscience

Eight European research institutes, including Johannes Gutenberg University Mainz (JGU) in Germany, and three commercial partners have joined forces in an EU project to provide young academics with an outstanding research environment in the field of systemic neuroscience. The project by the name of FLiACT has been awarded four years of EU-funding through the Marie Curie Actions program.


The image taken from a high-speed video shows a fruit fly Drosophila of about 2.5 millimeters in body length engaged in climbing over a barely surmountable gap.
©: Strauss lab

The participating partners are working on various complementary aspects of neuroscience, ranging from molecular genetics to bioengineering. The nervous system of the fruit fly, Drosophila melanogaster, will be serving as the research focus. The objective of FLiACT is to create a unique training network in order to develop new research sectors and promote collaboration among research institutes. The neurobiology work group headed by Professor Dr. Roland Strauss at the Institute of Zoology at Mainz University is also part of the network.

Discovering how the brain functions represents one of the greatest challenges of current research. In order to understand cognitive processes in the brain, it is necessary to analyze its activity at various levels, beginning with its genetic building plan and covering biochemical processes and neural circuits as well as the characteristics of certain types of behavior. Over the last decades, the fruit fly Drosophila has become the model organism used by scientists to investigate the means by which sensory information is gathered, processed, and stored, and behavioral output is generated. Drosophila has already proven useful when it comes to the investigation of the genetic causes of neurodegenerative disorders, such as Alzheimer's disease. The human brain has a million times more neurons than that of Drosophila, but because both share common principles, it is possible to understand complex brain functions by studying the miniature fly brain. Thanks to FLiACT, twelve young European researchers now have the opportunity of embarking on a doctoral dissertation project that will look at cutting-edge aspects of neuroscience.

The participants will undertake a considerable part of their work in cooperation with the partner institutions, for example as visiting scientists. They will receive training in interdisciplinary workshops to enable them to acquire skills in innovative technologies in the areas of neurogenetics, neuroanatomy, neuroimaging and behavior analysis, while the commercial project partners will provide them with insight into such aspects as technology transfer and project management. There are also opportunities for cooperation with the Janelia Farm Research Campus, a research institute of the Howard Hughes Medical Institute in the United States of America.

The research group led by Professor Dr. Roland Strauss at Mainz University will be contributing to the project with its work on the biochemistry of learning and the underlying neuronal networks. The group studies the persistence of memory – from memories that are retained for a few seconds only to those that last an entire lifetime. "Improvements in motor skills acquired by repetitive training, for example, can enhance the climbing success of a fly for its entire lifetime," explains Strauss. But the insects are also capable of remembering the location of an object and of using it as a spatial orientation aid. Studies conducted in Mainz have shown that flies can remember the location of this object for several seconds after it has been removed from their environment. The researchers were able to pinpoint a small group of neurons that are responsible for this memory-based orientation ability. "The new EU network will help promote cooperation with other European research groups and thus lead to a better understanding of how the brain processes and retains information."

The FLiACT project (Systems neuroscience of Drosophila: from genes to circuits to behaviors) is an Initial Training Network (ITN) sponsored by the European Union. It is being coordinated by Dr. Matthieu Louis of the Center for Genomic Regulation in Barcelona, Spain.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15126.php
http://www.fliact.eu/
http://www.kowi.de/en/desktopdefault.aspx/tabid-153/490_read-258/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>