Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infographic: Dive Deep Into the Electromagnetic Spectrum

08.05.2015

Image illustrates different wavelengths with creatures and objects in the ocean

It can be difficult in our everyday lives to appreciate the extraordinary range of wavelengths in the electromagnetic spectrum. Electromagnetic radiation—from radio waves to visible light to x-rays—rises and falls as it travels through space, like waves rippling across the ocean.


Brookhaven National Laboratory

The wavelengths of the electromagnetic spectrum illustrated by ocean creatures and objects.

The length of these waves—measured from peak to peak or valley to valley—helps define their properties and potential uses.

This infographic uses ocean creatures and objects to express these different wavelengths, which can actually stretch to sizes both larger and smaller than this image conveys. Many of these objects, including the 30-meter blue whale or the 2-centimeter pygmy seahorse, can be easily seen with the naked eye.

But scientists and students must use microscopes and similar devices to see the objects in the middle of the spectrum, including algae and viruses. At the right end of the spectrum, however, much more sophisticated instruments are required.

Brookhaven Lab specializes in exploring materials on the nanoscale, spanning just billionths of a meter. To reveal structural details the size of DNA, we use powerful x-rays produced at the National Synchrotron Light Source II, precise electron microscopes at the Center for Functional Nanomaterials, and a host of other sensitive instruments and techniques.

Investigating materials at that scale—from lithium-ion batteries to cell-building proteins—allows fundamental discoveries that can revolutionize our understanding of biology, energy technology, and even the cosmos.

In fact, Brookhaven Lab scientists use the Relativistic Heavy Ion Collider to explore subatomic phenomena spanning just millionths of a billionth of a meter—too small to fit onto this graphic of the electromagnetic spectrum produced by Media & Communications and Creative Resources' designer Tiffany Bowman and science writer Justin Eure, in collaboration with our researchers.

Grab the full, poster-size image on Brookhaven's Flickr.

Contact Information
Justin Eure
Public Affairs Representative
jeure@bnl.gov

Justin Eure | newswise
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>