Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Outside influence: Genes outside nucleus have disproportionate effect

New research from the University of California, Davis, shows that the tiny proportion of a cell's DNA that is located outside the cell nucleus has a disproportionately large effect on a cell's metabolism. The work, with the model plant Arabidopsis, may have implications for future treatments for inherited diseases in humans.

Plant and animal cells carry most of their genes on chromosomes in the nucleus, separated from the rest of the cell. However, they also contain a small number of genes in organelles that lie outside the nucleus. These are the mitochondria, which generate energy for animal and plant cells, and chloroplasts, which carry out photosynthesis in plant cells.

Experiments with Arabidopsis plants like this six-week-old could help shape future IVF treatments. (Baohua Li, UC Davis. )

The influence of genes outside the nucleus was known to an earlier generation of field ecologists and crop breeders, said Dan Kliebenstein, professor in the UC Davis Department of Plant Sciences and Genome Center and senior author on the paper published Oct. 8 in the online journal eLife. This is the first time that the effect has been quantified with a genomic approach, he said.

Bindu Joseph, a postdoctoral researcher in Kliebenstein's lab, and Kliebenstein studied how variation in 25,000 nuclear genes and 200 organellar genes affected the levels of thousands of individual chemicals, or metabolites, in leaf tissue from 316 individual Arabidopsis plants.

They found that 80 percent of the metabolites measured were directly affected by variation in the organellar genes — about the same proportion that were affected by variation among the much larger number of nuclear genes. There were also indirect effects, where organellar genes regulated the activity of nuclear genes that in turn affected metabolism.

"At first it's surprising, but at another level you almost expect it," Kliebenstein said. "These organelles produce energy and sugar for cells, so they are very important."

Similar effects could also occur in mammalian cells, Kliebenstein said. That has implications for in vitro fertilization therapies aimed at preventing diseases caused by faulty mitochondria being passed from mother to child. The British government recently proposed draft regulations for "three-parent embryos," created by taking a the nucleus from a fertilized egg and putting it into an egg cell from a third donor with its own set of mitochondria. The technique has so far only been tested in animals.

"From what we can see in plants, there might be an issue, but it needs testing," Kliebenstein said.

Large population surveys that aim to link conditions such as obesity to specific genes should also take more account of organellar genes, he said.

Co-authors on the paper are graduate student Jason Corwin and project scientists Baohua Li and Suzi Atwell. The work was supported by the National Science Foundation.

Media contact(s):
Daniel Kliebenstein, Plant Sciences, (530) 754-7775,
Andy Fell, UC Davis News Service, (530) 752-4533,

Andy Fell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>