Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The influence of the environment on genetically modified wheat

13.07.2010
Differences between greenhouse and field trial results

In the greenhouse, lines of genetically modified wheat carrying a resistance gene against the fungal disease mildew have a yield which is up to twice as high as that of control plants. In the field however, this ratio is reversed for certain, but not all, wheat lines.

A study performed within the National Research Programme «Benefits and Risks of the Deliberate Release of Genetically Modified Plants» (NRP 59) concludes from these results that data from the greenhouse cannot be applied to the situation in the field and that therefore field trials are important.

Thanks to a natural resistance gene from an old Asian wheat variety genetically modified wheat is more resistant to the fungal disease mildew, also in the field. But in field trials, some wheat lines show a reduced yield or a modified ear shape, which had not been observed in the greenhouse. Such accompanying variations have been known for some time in breeding processes, but now, for the first time, researchers working at the University of Zurich have described in PLoS One (*) how significant the differences between greenhouse and field trials really are.

Reduced yield
In the greenhouse, where many plants are a target for mildew when not treated with fungicides, the genetically modified wheat has an advantage due to its enhanced resistance. Its yield is up to twice as high as that of the untreated non-transgenic control plants. In the field however, the wheat plants are up against droughts, insect infestation and competition with other plants. In this environment, the genetically modified wheat plants are still more resistant, but this leads to a drop in yield for some wheat lines. Furthermore, in field trials the ears of certain genetically modified wheat lines take on a different shape, which favours infestation with rye ergot, another fungus.

These side effects do not show up in some wheat lines, in others the degree of the effects varies. This might have to do with variations in the position and activity of the resistance gene.

Field trials are necessary
The experiments show that it is not always possible to identify plants which will be able to assert themselves in a natural environment by performing trials in the protected setting of a greenhouse. The complex relationships between plants and their environment are only revealed in field trials.

(*) Simon Zeller, Olena Kalinina, Susanne Brunner, Beat Keller und Bernhard Schmid (2010). Transgene × Environment Interactions in Genetically Modified Wheat. PLoS One, online: http://dx.plos.org/10.1371/journal.pone.0011405

National Research Programme «Benefits and Risks of the Deliberate Release of Genetically Modified Plants» (NRP 59)
Within the NRP 59, researchers active in a total of 29 research projects are investigating the benefits and risks of genetically modified plants with regard to the ecological, social, economic, legal and political situation in Switzerland. In one of these projects, an association of research groups belonging to various higher education institutions – the wheat-cluster.ch – is analyzing the fungal resistance of genetically modified wheat in a field trial at the Agroscope Reckenholz-Tänikon ART research station.

www.nrp59.ch

Contact:
Prof. Bernhard Schmid
Institute of Evolutionary Biology and Environmental Sciences
Universität Zürich
Winterthurerstrasse 190
8057 Zürich
Phone: ++41 (0)44 635 52 05
E-mail: bernhard.schmid@ieu.uzh.ch

| idw
Further information:
http://www.snf.ch
http://dx.plos.org/10.1371/journal.pone.0011405

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>