Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Inflammation 'on switch' also serves as 'off switch'

In a surprising finding, researchers at North Carolina State University have discovered the critical importance of a protein previously believed to be a redundant “on switch” for certain immune-system responses.

Scientists previously understood that the protein called TAB2 activates inflammation, an important biological process that stimulates wound-healing and prevents invasion of harmful organisms. But scientists considered TAB2 nonessential to the process due to the redundant function of a cousin protein, called TAB3, which has no trouble serving as an “on switch” to activate the inflammation process in TAB2’s absence.

In a study published in the Jan. 22 edition of the Journal of Biological Chemistry, the NC State researchers show that underestimating TAB2 can be dangerous. Rather than merely serving as an “on switch,” TAB2 also serves as an “off switch” that turns off the inflammation process. When TAB2 is absent or knocked out in cell cultures, the inflammation process continues unabated.

Too much inflammation can be a really bad thing. It is associated with human diseases including certain cancers, inflammatory bowel syndrome and psoriasis.

Knowing more about the regulatory mechanisms in cells may one day lead to drugs that can target excessive inflammation, say NC State’s Dr. Jun Ninomiya-Tsuji, associate professor of environmental and molecular toxicology, and her graduate student, Peter Broglie, the lead authors of the paper describing the study.

In the study, Ninomiya-Tsuji and Broglie show that cells lacking TAB2 had a prolonged inflammation response. Normally, TAB2 can be counted on to bring a protein called TAK1 close to tumor necrosis factor, or TNF, a circulating molecule that is a normal component of the immune system. Bringing TAK1 close to TNF activates TAK1, thereby starting the inflammatory response.

In normal systems, this inflammatory response would be quickly regulated to prevent too much inflammation. This is done by a regulating molecule called PP6, which deactivates TAK1, and, therefore, the inflammation process. When TAB2 was absent or knocked out, however, PP6 did not shut down TAK1. The NC State scientists infer, then, that TAB2 has a heretofore unknown function – it brings TAK1 close enough to PP6 to halt the inflammation process.

The NC State scientists were so surprised by the finding that, Broglie says, “Dr. Ninomiya-Tsuji made me replicate the study three times.”

The study was funded by a grant to Ninomiya-Tsuji from the National Institutes of Health. Co-authors of the paper included scientists from the University of Virginia and two Japanese universities – Nagoya University and Osaka University.

- kulikowski -

Note: An abstract of the paper follows.

“A TAK1 kinase adaptor, TAB2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in TNF signaling pathway”

Authors: Peter Broglie and Jun Ninomiya-Tsuji, North Carolina State University; Kunihiro Matsumoto, Nagoya University; Shizuo Akira, Osaka University; David L. Brautigan, University of Virginia

Published: Jan. 22, 2010, in Journal of Biological Chemistry

Abstract: TAK1 kinase is an indispensable signaling intermediate in TNF, IL-1, and Toll-like receptor signaling pathways. TAK1 binding protein 2 (TAB2) and its closely related protein, TAB3, are binding partners of TAK1, and have previously been identified as adaptors of TAK1 that recruit TAK1 to a TNF receptor signaling complex. TAB2 and TAB3 redundantly mediate activation of TAK1. In this study, we investigated the role of TAB2 by analyzing fibroblasts having targeted deletion of tab2 gene. In TAB2-deficient fibroblasts, TAK1 was associated with TAB3 and activated following TNF stimulation. However, TAB2-deficient fibroblasts displayed a significantly prolonged activation of TAK1 compared with wild type control cells. This suggests that TAB2 mediates deactivation of TAK1. We found that a TAK1 negative regulator, protein phosphatase 6 (PP6), was recruited to TAK1 complex in wild type but not in TAB2-deficient fibroblasts. Furthermore, we demonstrated that both PP6 and TAB2 interacted with the polyubiquitin chains and this interaction mediated the assembly with TAK1. Our results indicate that TAB2 not only activates TAK1 but also plays an essential role in the deactivation of TAK1 by recruiting PP6 through a polyubiquitin chain-dependent mechanism.

Mick Kulikowski | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>