An infectious hereditary illness?

Researchers at the CNRS Laboratoire d’enzymologie et biochimie structurales, studying Huntington’s disease in collaboration with Professor Ron Kopito’s team at Stanford University, have shown that the normal form of huntingtin protein can acquire an abnormal form without any modification of its genetic code.

These researchers observed that clumps of abnormal huntingtin protein, characteristic of Huntington’s disease, could induce clumping in the normal form of the protein. This work is published in the February 2009 edition of Nature Cell Biology.

Huntington’s disease is a genetic neurological disorder causing neuron degeneration, which in turn affects motor and cognitive functions. The illness arises due to an alteration in the gene sequence coding for huntingtin protein. When Huntington’s disease develops, huntingtin protein forms clumps that hinder normal functions and are closely linked to neurodegeneration.

Researchers at the CNRS Laboratoire d’enzymologie et biochimie structurales, in collaboration with researchers at Stanford University, have shown that huntingtin protein clumps are released from the cells where they develop and can propagate to healthy cells. Once cells are infected, the normal form of huntingtin then starts to clump and the illness spreads. The researchers noticed that the clumps persisted over several generations of cells expressing normal huntingtin following their temporary exposure to protein clumps from Huntington’s disease. This contamination by proximity is similar to the development of illnesses caused by prions (encephalopathies associated with “abnormal” prions).

These results suggest that huntingtin protein clumps are transmissible and that their propagation from one cell to another could be a generic vector of neurodegenerative illnesses.

Full bibliographic information:
Bibliography
Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates, Pei-Hsien Ren, Jane E. Lauckner, Loulia Kachirskaia, John E. Heuser, Ronald Melki and Ron R. Kopito, Nature cell biology, February 2009

Media Contact

Julien Guillaume alfa

More Information:

http://www.cnrs.fr

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors