Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An infectious hereditary illness?

Could a hereditary illness ever spread by contamination?

Researchers at the CNRS Laboratoire d’enzymologie et biochimie structurales, studying Huntington’s disease in collaboration with Professor Ron Kopito’s team at Stanford University, have shown that the normal form of huntingtin protein can acquire an abnormal form without any modification of its genetic code.

These researchers observed that clumps of abnormal huntingtin protein, characteristic of Huntington’s disease, could induce clumping in the normal form of the protein. This work is published in the February 2009 edition of Nature Cell Biology.

Huntington’s disease is a genetic neurological disorder causing neuron degeneration, which in turn affects motor and cognitive functions. The illness arises due to an alteration in the gene sequence coding for huntingtin protein. When Huntington’s disease develops, huntingtin protein forms clumps that hinder normal functions and are closely linked to neurodegeneration.

Researchers at the CNRS Laboratoire d’enzymologie et biochimie structurales, in collaboration with researchers at Stanford University, have shown that huntingtin protein clumps are released from the cells where they develop and can propagate to healthy cells. Once cells are infected, the normal form of huntingtin then starts to clump and the illness spreads. The researchers noticed that the clumps persisted over several generations of cells expressing normal huntingtin following their temporary exposure to protein clumps from Huntington’s disease. This contamination by proximity is similar to the development of illnesses caused by prions (encephalopathies associated with "abnormal" prions).

These results suggest that huntingtin protein clumps are transmissible and that their propagation from one cell to another could be a generic vector of neurodegenerative illnesses.

Full bibliographic information:
Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates, Pei-Hsien Ren, Jane E. Lauckner, Loulia Kachirskaia, John E. Heuser, Ronald Melki and Ron R. Kopito, Nature cell biology, February 2009

Julien Guillaume | alfa
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>