Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Industrial Application For Revolutionary Forensic Metal Fingerprinting Technique

21.10.2010
Simple, handheld device which can measure corrosion on machine parts
Groundbreaking research into fingerprint detection developed at the University of Leicester now has an industrial application, thanks to a new invention by the scientist who developed the technique.
 
Dr John Bond’s method of identifying fingerprints on brass bullet-casings, even after they have been wiped clean, was based on the minuscule amounts of corrosion which can be caused by sweat. First announced in 2008, this breakthrough was cited as one of the technologies ‘most likely to change the world’ by a panel of experts for BBC Focus magazine and was included in Time magazine’s list of ’50 best inventions of the year’.
 
Now, working with scientists in the University of Leicester Department of Chemistry, Dr Bond has applied the same technique to industry by developing a simple, handheld device which can measure corrosion on machine parts. Corrosion leads to wear and tear and needs to be carefully monitored so that worn parts are replaced at the appropriate time so this invention should prove a boon to the manufacturing sector.
 
“This is a new, quick, cheap and easy way of measuring the extent of corrosion on copper and copper based alloys, such as brass,” explains Dr Bond, who is an Honorary Research Fellow in the University’s Forensic Research Centre and Scientific Support Manager at Northamptonshire Police.
 
“It works by exploiting the discovery we made during the fingerprint research – that the corrosion on brass forms something called a ‘Schottky barrier’ – and we use this to see how much the metal has corroded.
 
“Such measurements can already be made but this is quick,  cheap and easy and can be performed 'in the field' as it works off a nine-volt battery.”
 
Dr Bond said: “Measuring corrosion of metal such as brass is important to ensure that machinery does not operate outside its safe limits.  
 
“This could be anything from checking that a water pipe will not burst open to ensuring that the metal on an airplane is not corroded.  This could lead, for instance, to the wheels falling off a jet.   Having a corrosion measurement means for copper and alloys such as brass that is quick portable and cheap enables metals to be tested in situ with no prior set up of a corrosion measuring device.  
 
“Also, rather than simply saying that the brass is corroding (as a technique such as weighing  the brass would) this technique enables the type of corrosion to be determined (i.e. copper oxide or zinc oxide corrosion).  As to which one it is gives clues as to how severe the corrosion is.  
 
“This can be done already with something like X-ray photoelectron Spectroscopy (XPS) but that is lab based and very expensive to use.  Our technique works off a 9-volt battery.  In that sense, it won't tell you any more than XPS can, it is just quicker, cheaper and easier.
 
“A common use of brass in industry is heat exchangers as brass is a good conductor of heat.  If these are water based, then seeing how the water is corroding the brass is useful.  Also, you simply need to be able to touch the brass with a probe, there is no other setting up required.  It's as easy as taking your temperature with a thermometer.”
 
There is much research on inhibiting the corrosion of brass because of its use in heat exchangers and industrial pipe work, this technique enables the degree of corrosion to be easily measured.
 
A description of the prototype device has been published in the journal Review of Scientific Instruments. Dr Bond and his colleagues are now looking for a company which could exploit the invention and place it on the market.
 
For  more information, please contact:
 
Dr John W Bond
Honorary Fellow
Forensic Research Centre
University of Leicester
 
Media contacts:
John Bond | Scientific Support Manager
Contact via Northamptonshire Police Press Office:
Tel: (01604) 703197/8/9 or 703238
 
Or
University of Leicester Press Office
0116 252 2415 pressoffice@le.ac.uk
Press Office Contact:
Ather Mirza
Press Office
Division of Corporate Affairs and Planning
University of Leicester
tel: 0116 252 3335
email: pressoffice@le.ac.uk
Twitter: @UniofLeicsNews
ABOUT THE UNIVERSITY OF LEICESTER
- A member of the 1994 Group of universities that shares a commitment to research excellence, high quality teaching and an outstanding student experience.
Winner of Outstanding Student Support award, Times Higher 2009/10
Named University of the Year by Times Higher (2008/9) Shortlisted (2006, 2005) and by the Sunday Times (2007)
Ranked 12th in the UK by The Guardian and 15th by The Times out of more than 100 universities
Ranked in world’s top 2% of universities by the-QS World University Rankings
Described as Elite without being Elitist by the Times Higher Education magazine

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk
http://www2.le.ac.uk/about/facts

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>