Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Industrial Application For Revolutionary Forensic Metal Fingerprinting Technique

21.10.2010
Simple, handheld device which can measure corrosion on machine parts
Groundbreaking research into fingerprint detection developed at the University of Leicester now has an industrial application, thanks to a new invention by the scientist who developed the technique.
 
Dr John Bond’s method of identifying fingerprints on brass bullet-casings, even after they have been wiped clean, was based on the minuscule amounts of corrosion which can be caused by sweat. First announced in 2008, this breakthrough was cited as one of the technologies ‘most likely to change the world’ by a panel of experts for BBC Focus magazine and was included in Time magazine’s list of ’50 best inventions of the year’.
 
Now, working with scientists in the University of Leicester Department of Chemistry, Dr Bond has applied the same technique to industry by developing a simple, handheld device which can measure corrosion on machine parts. Corrosion leads to wear and tear and needs to be carefully monitored so that worn parts are replaced at the appropriate time so this invention should prove a boon to the manufacturing sector.
 
“This is a new, quick, cheap and easy way of measuring the extent of corrosion on copper and copper based alloys, such as brass,” explains Dr Bond, who is an Honorary Research Fellow in the University’s Forensic Research Centre and Scientific Support Manager at Northamptonshire Police.
 
“It works by exploiting the discovery we made during the fingerprint research – that the corrosion on brass forms something called a ‘Schottky barrier’ – and we use this to see how much the metal has corroded.
 
“Such measurements can already be made but this is quick,  cheap and easy and can be performed 'in the field' as it works off a nine-volt battery.”
 
Dr Bond said: “Measuring corrosion of metal such as brass is important to ensure that machinery does not operate outside its safe limits.  
 
“This could be anything from checking that a water pipe will not burst open to ensuring that the metal on an airplane is not corroded.  This could lead, for instance, to the wheels falling off a jet.   Having a corrosion measurement means for copper and alloys such as brass that is quick portable and cheap enables metals to be tested in situ with no prior set up of a corrosion measuring device.  
 
“Also, rather than simply saying that the brass is corroding (as a technique such as weighing  the brass would) this technique enables the type of corrosion to be determined (i.e. copper oxide or zinc oxide corrosion).  As to which one it is gives clues as to how severe the corrosion is.  
 
“This can be done already with something like X-ray photoelectron Spectroscopy (XPS) but that is lab based and very expensive to use.  Our technique works off a 9-volt battery.  In that sense, it won't tell you any more than XPS can, it is just quicker, cheaper and easier.
 
“A common use of brass in industry is heat exchangers as brass is a good conductor of heat.  If these are water based, then seeing how the water is corroding the brass is useful.  Also, you simply need to be able to touch the brass with a probe, there is no other setting up required.  It's as easy as taking your temperature with a thermometer.”
 
There is much research on inhibiting the corrosion of brass because of its use in heat exchangers and industrial pipe work, this technique enables the degree of corrosion to be easily measured.
 
A description of the prototype device has been published in the journal Review of Scientific Instruments. Dr Bond and his colleagues are now looking for a company which could exploit the invention and place it on the market.
 
For  more information, please contact:
 
Dr John W Bond
Honorary Fellow
Forensic Research Centre
University of Leicester
 
Media contacts:
John Bond | Scientific Support Manager
Contact via Northamptonshire Police Press Office:
Tel: (01604) 703197/8/9 or 703238
 
Or
University of Leicester Press Office
0116 252 2415 pressoffice@le.ac.uk
Press Office Contact:
Ather Mirza
Press Office
Division of Corporate Affairs and Planning
University of Leicester
tel: 0116 252 3335
email: pressoffice@le.ac.uk
Twitter: @UniofLeicsNews
ABOUT THE UNIVERSITY OF LEICESTER
- A member of the 1994 Group of universities that shares a commitment to research excellence, high quality teaching and an outstanding student experience.
Winner of Outstanding Student Support award, Times Higher 2009/10
Named University of the Year by Times Higher (2008/9) Shortlisted (2006, 2005) and by the Sunday Times (2007)
Ranked 12th in the UK by The Guardian and 15th by The Times out of more than 100 universities
Ranked in world’s top 2% of universities by the-QS World University Rankings
Described as Elite without being Elitist by the Times Higher Education magazine

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk
http://www2.le.ac.uk/about/facts

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>