Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing Drought Stress Predicted to Challenge Vulnerable Hydraulic System of Plants

29.11.2012
The hydraulic system of trees is so finely-tuned that predicted increases in drought due to climate change may lead to catastrophic failure in many species.

A recent paper co-authored by George Washington University Assistant Professor of Biological Sciences Amy Zanne finds that those systems in plants around the globe are operating at the top of their safety threshold, making forest ecosystems vulnerable to increasing environmental stress.

In the current issue of the journal Nature, Dr. Zanne and lead authors from the University of Western Sydney in Australia and Ulm University in Germany, report that the hydraulic system trees depend on is a unique but unstable mechanism that is constantly challenged.

“Drought is a major force shaping our forests,” said Dr. Zanne, a faculty member within the Columbian College of Arts and Sciences. “Over the last century, drought has been responsible globally for numerous large-scale forest diebacks. To make effective predictions of how forest landscapes may change in the future, we need to first understand how plants work.”

The primary challenge plants face during drought is how to keep their plumbing working. Drought stress creates trapped gas emboli in the water system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and death.

“Vulnerability to embolism is one of the main factors determining drought effects on trees,” Dr. Zanne said. “However, plants vary dramatically in their resistance to drought-induced embolism, which has made predictions of how forests might be altered under future climates more difficult.”

While the research findings are alarming, plants do have a few other tricks up their sleeves. They may have some flexibility of changing their plumbing or new species of trees may replace species no longer capable of persisting in a given place.

An international team consisting of Dr. Zanne and 23 other plant scientists organized via the ARC-NZ Research Network for Vegetation Function at Macquarie University in Sydney, Australia, analyzed existing measures of plant hydraulic safety thresholds in forest species around the world.

The surprising result that the group discovered is that while plants vary greatly in their embolism resistance, they are sitting at similar safety thresholds across all forest types. The team found these thresholds are largely independent of mean annual precipitation.

The findings explain why drought-induced forest decline occurs in arid as well as wet forests, which had historically not been considered at risk.

George Washington University
In the heart of the nation's capital with additional programs in Virginia, the George Washington University was created by an Act of Congress in 1821. Today, GW is the largest institution of higher education in the District of Columbia. The university offers comprehensive programs of undergraduate and graduate liberal arts study, as well as degree programs in medicine, public health, law, engineering, education, business and international affairs. Each year, GW enrolls a diverse population of undergraduate, graduate and professional students from all 50 states, the District of Columbia, and more than 130 countries.

Latarsha Gatlin | Newswise Science News
Further information:
http://www.gwu.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>