Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased understanding of immune system activation

04.03.2009
Linda Andersson at Malmö University in Sweden has studied the ability of dendritic cells to sample the surrounding environment.

To understand how different materials are taken up and what happens within the cells can for example facilitate the development of new vaccines.

"The immune system is a large and important part of ourselves and the dendritic cells are important for the activation of this system", Linda Andersson says.

"One task of the immune system is to protect the body from infections. The dendritic cells have an unique ability to obtain samples from its environment and treat the material, in process called endocytosis. In my study I have explored how dendritic cells recognise and capture particles. "

To study the endocytosing ability of dendritic cells Linda Andersson has used zeolite particles and through them different biomolecules are transported into the cell. With the help of zeolites you can follow different paths and study what happens within the cell.

"The result shows that zeolites are an useful tool for studying endocytosis and that there are differences between various dendritic cells," Linda Andersson says.

A method is developed for studying the early activities of the endocytosing mechanism within the cells. From this you can go further and study other processes and other types of cells.

Zeolites belong to a group of silica particles which easily can adsorb different types of molecules, for example antibodies and other proteins. The type of molecule and the charge and amount of molecules affects the endocytosing ability of the cells.

Dendritic cells are found in different parts of the body, for example skin, mucous, spleen and circulating in the blood. Linda Andersson has chosen to study the cells in the blood. In her study dendritic cells from the blood are compared with dendritic cells produced in vitro, that is from a culture in an artificial environment. Dendritic cells are not so common in the blood. Through in vitro-culture you can easily produce many dendritic cells.

"The differences in the early events of the endocytosing mechanism between these two types of cells were considerable", Linda Andersson says.

This is important to point out, since in vitro-cells are among other things considered in the development of new vaccines. The blood cells are better at taking up particles while the in vitro-cells are better at taking up proteins and soluble molecules.

The thesis by Linda Andersson contributes to an increased understanding of how the important dendritic cells work.

"I hope that the method developed in my study can be used to produce more knowledge about the different paths of the endocytosed material and how the dendritic cells recognise and capture the bodies own material and foreign harmful material", Linda Andersson says.

For more information contact Linda Andersson, tel +46 40 665 79 57, +46 704 94 33 31, e-mail: linda.andersson@mah.se

Pressofficer Hanna Holm; +46-40 665 70 22; Hanna.Holm@mah.se

Hanna Holm | idw
Further information:
http://www.mah.se

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>