Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In vitro tests show clinically tested drug overcomes resistance to potential new cancer therapy

03.04.2014

Results from laboratory experiments carried out by a team of molecular biologists at Saarland University have identified a strategy for overcoming resistance to a new therapeutic opportunity for prostate cancer patients and for potentially suppressing the migration of cancer cells.

The new therapeutic approach, which is currently being studied by numerous research groups, aims to destroy cancer cells by influencing cellular calcium distribution. However, the research team, supervised by Professor Richard Zimmermann and Dr Markus Greiner, found that in about half of the patients examined, a cellular mechanism was present that could impede the efficacy of the new therapy.

The molecular biologists discovered that this resistance was caused by an increased concentration of the protein Sec62 in the tumour cells. Results from their laboratory cell line experiments indicate that a pharmaceutically active agent previously used in the treatment of psychotic disorders can counteract the observed cellular resistance as well as supress cell migration. The research team has published its findings in the medical journal BMC Cancer.

Prostate cancer is the most common malignant tumour in men. A new therapeutic approach to combating the disease is currently the subject of international research. In recent years, US scientists have developed a number of analogues of thapsigargin that are capable of selectively killing tumour cells by emptying the calcium stores in these cells.

But recent research by scientists at Saarland University’s Faculty of Medicine in Homburg has demonstrated that in approximately half of the patients suffering from prostate cancer, the tumour cells can be expected to show a resistance to this new form of therapy.

‘The resistance mechanism is due to a higher concentration of the protein Sec62,’ explains Professor Richard Zimmermann. As a result of increased Sec62 levels the protein calmodulin can close the calcium leak channels more efficiently in the membrane of the important intracellular calcium store known as the endoplasmic reticulum. ‘This is why tumour cells with a higher concentration of Sec62 show greater resistance to treatment regimens based on thapsigargin analogues,’ says Zimmermann.

Working with tumour cell cultures in the laboratory, Zimmermann’s group at the Department of Medical Biochemistry and Molecular Biology has found a possible solution to the problem and their results have been published in the journal BMC Cancer. ‘Using tumour cell lines, we were able to show that a substance called trifluoperazine (TFP) was able to counteract the observed resistance. TFP has been used as an antipsychotic and was marketed in Germany under the brand Jatroneutral® where it was used in the treatment of psychotic disorders,’ explains Dr Markus Greiner, a member of Professor Zimmermann’s research team. ‘TFP binds directly to the protein calmodulin and thus impairs the calmodulin-mediated closure of the calcium channels,’ explains Greiner.

Sec62 has been shown to be an important tumour marker, i.e. a protein that occurs at enhanced concentrations in tumour cells, not only in prostate carcinomas, but also in thyroid and lung carcinomas. The Homburg researchers see a correlation between the presence of Sec62 protein and a more aggressive tumour and hence lower patient survival rates. The research team also measured increased Sec62 concentrations in tumours that had already metastasized.

‘Calcium is an important signalling molecule that regulates cell migration, which is itself an important contributor to tumour metastasis,’ says Markus Greiner. The calcium in the cells ensures that the cells can detect the direction in which they are migrating. If these tumour cells are treated with TFP, the calcium store will be emptied and the cells essentially lose their orientation. ‘This leads to an almost complete cessation of cellular migration,’ explains Greiner.

‘We propose a therapeutic approach based on TFP in combination with thapsigargin analogues. In future, this may be a therapeutic option for those many patients whose tumours have a high cellular concentration of Sec62, which might make them unsuitable for treatment with thapsigargin,’ says Greiner. The results obtained by the Homburg research team will now be evaluated in tumour model studies before any clinical trials can be proposed.

Original publication: Linxweiler M., Schorr S., Schäuble N., Jung M., Linxweiler J., Langer F., Schäfers H.-J., Cavaliè A., Zimmermann R., and Greiner M.: Targeting cell migration and Endoplasmic Reticulum stress response with calmodulin antagonists: Mimicking Sec62-depletion phenotypes by small molecule treatment, BMC Cancer, 2013, 13:574;
doi: 10.1186/1471-2407-13-574

Contact: Prof. Dr. Richard Zimmermann: +49 (0)6841 162-6511
E-mail: richard.zimmermann@uks.eu
Dr. Markus Greiner: +49 (0)6841 162-6515 E-mail: m.greiner@uks.eu

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used free of charge.

Claudia Ehrlich | Universität des Saarlandes

Further reports about: BMC Cancer TFP analogues calmodulin carcinomas concentration disorders mechanism resistance therapy tumour

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>