Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In vitro tests of Vype vapor reveal no cell stress, DNA damage or cell transformation

15.03.2016

In each test, Vype ePen, a commercially available e-cigarette, produced the same results as an untreated control -- there was no activity

A series of cell-based tests developed to compare the biological impact of cigarette smoke with e-cigarette vapour revealed no activity in cells exposed to vapour from Vype ePen, a commercially available e-cigarette. In contrast, when the cell culture systems were exposed to cigarette smoke, they exhibited a series of responses including stress responses, DNA damage and cellular transformation, depending on the assay used.


Vype vapor produces the same result as an untreated control -- no activity in tests for cellular stress, double-strand DNA break and tumor promotion.

Credit: British American Tobacco

The use of these tests to assess the biological impact of e-cigarettes was reported by scientists from British American Tobacco at the annual meeting of the Society of Toxicology in New Orleans today.

'The results of these tests show that toxicity and biological activity is unaffected by the vapour from the e-cigarette tested, Vype ePen,' said Dr Kevin McAdam, Head of Next Generation Product (NGP) Research at British American Tobacco. 'These tests are part of a suite of tests being developed to test novel tobacco and nicotine products and could be used to help develop standards for these products in the future,' he said.

E-cigarette vapour can contain nicotine, humectants, flavourings and thermal degradation products, so it is important to understand the potential impact on biological systems.

A number of tests were used to compare the biological impact of cigarette smoke and e-cigarette vapour: cell stress tests, looking at the production of intracellular antioxidants, free radicals and inflammatory markers; assessment of DNA damage, which can set the scene for cancer; and a transformation assay, which measures the transformation or conversion of normal cells into a cancerous cell phenotype.

Stress

Cells respond to stress in a number of ways. They can produce compounds that protect the cellular structures or they can recruit compounds from the immune system to help protect the cell or commit suicide.

By measuring the levels of the various compounds produced and the level of cell apoptosis/death, it is possible to determine the levels of cellular stress.

The cell culture systems tested conventional 3R4F reference cigarette and Vype ePen, a commercially available e-cigarette. When cells were exposed to the cigarette smoke, all cell stress responses were activated. These same cell stress responses were not activated on exposure to e-cigarette vapour.

Damage

Cellular DNA can become damaged by exposure to toxicants, especially when stressed. DNA double-strand breaks (DSB) in which both strands of the double helix are broken, is the most serious type of DNA damage. This is a possible precursor to cancer and potentially lethal to the cell. The cell attempts to repair the DNA damage by modifying the histone or protein around which the DNA is wrapped. The changes observed in this histone can be used as an indicator of the level of DSB.

When this test was used to compare the impact of conventional 3R4F reference cigarette and Vype ePen on DSBs, the results showed that cigarette smoke induced significant DNA damage in human lung cells. This was dose dependent, that is, the higher the dose, the more DNA damage was induced. E-cigarette vapour produced no affect, even when the dose used was 15 times higher than the equivalent smoke exposure.

Disease

Damaged cells often go on to become cancerous. The cells are transformed from normal cells to abnormal cells that clump together and grow uncontrollably, eventually becoming tumour-like. This process can be mimicked in the lab by using cells that are already damaged and testing the tumour-promoting activities of different compounds.

In this case, the cell culture system was used to test the ability of conventional 3R4F reference cigarette and Vype ePen to promote tumour formation in a specialised cell type called Bhas 42.

After exposure to reference cigarettes, the layers of cells were seen to become transformed, clumping together to create colonies, suggesting that the smoke is a tumour promoter. By contrast, the e-cigarette produced no activity.

In each test, the e-cigarette produced the same results as an untreated control - there was no activity.

Many in the public health community believe that e-cigarettes are substantially reduced risk compared to cigarettes. Public Health England, an executive body of the UK Department of Health, recently published a report saying that e-cigarettes are 95% safer than cigarettes. But there are still no internationally agreed testing protocols to establish this.

Media Contact

Marina Murphy
marina_murphy@bat.com
44-077-111-50135

 @BAT_Sci

http://www.bat-science.com 

Marina Murphy | EurekAlert!

Further reports about: DNA DNA damage Tobacco cell stress cigarette smoke culture e-cigarette e-cigarettes normal cells

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>