Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In pursuit of flat growth in leaves

05.10.2016

How does a set of plant cells grow from a bump into a flat leaf that can efficiently capture sunlight? In a paper published this week in PNAS, EMBL scientists show how different types of molecules on the top and bottom of a leaf keep each other in check, ensuring the leaf grows flat.

As a leaf develops, its cells create two different tissues, one on each side of the leaf. Scientists knew that only cells in the top side produce proteins called Class III HD-ZIPs. In the bottom layer, these Class IIIs are suppressed by another set of molecules called microRNA165/166. But how are those microRNAs confined to the bottom side?


If the molecular balance is disturbed, leaves grow stem-like (right), instead of flattening out. PHOTO: Paz Merelo/EMBL


Normally (left), the microRNAs (green) are only found in the cells that will form the bottom side of the leaf. But in the absence of Class IIs (right) they were present throughout the young leaves. IMAGE: Paz Merelo/EMBL

Marcus Heisler’s labs at EMBL and at the University of Sydney found that the Class IIIs in the top tissues of the leaf act together with some closely related proteins, the Class IIs, to suppress the microRNAs.

When Paz Merelo, a postdoc in Heisler’s lab at EMBL, examined Arabidopsis plants in which these Class IIs were not functioning, the microRNAs were no longer inhibited in the top side of the growing leaves. 

So in the absence of Class IIs, the Class IIIs alone aren’t able to counter the microRNAs. The microRNAs can then switch off the Class IIIs on both the bottom and the top of the leaves, and consequently the leaves don’t flatten out, but grow stem-like.

“The activities of the Class III HD-ZIPs and microRNAs somehow have to be perfectly balanced, right from the beginning, to get a nice leaf,” says Heisler.  “And that seems unlikely to happen on its own: so what’s maintaining this balance?”

Heisler and colleagues are following up on the work, looking into how the balance between ‘top’ and ‘bottom’ factors is maintained, honing in on exactly how Class IIIs and Class IIs work together, and investigating other molecules that are restricted to only one side of a growing leaf.

The study was a collaboration with Stephan Wenkel’s lab at the University of Copenhagen.

  • Full bibliographic informationMerelo et al. Regulation of MIR165/166 by Class II and Class III homeodomain leucine zipper proteins establishes leaf polarity. PNAS Early Edition, to be published the week of 3 October 2016. DOI: 10.1073/pnas.1516110113

http://s.embl.org/pr031016

For further information, please contact:

Sonia Furtado

+ 49 6221 387 8263

sonia.furtado@embl.de

Sonia Furtado | AlphaGalileo

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>