Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In pursuit of flat growth in leaves

05.10.2016

How does a set of plant cells grow from a bump into a flat leaf that can efficiently capture sunlight? In a paper published this week in PNAS, EMBL scientists show how different types of molecules on the top and bottom of a leaf keep each other in check, ensuring the leaf grows flat.

As a leaf develops, its cells create two different tissues, one on each side of the leaf. Scientists knew that only cells in the top side produce proteins called Class III HD-ZIPs. In the bottom layer, these Class IIIs are suppressed by another set of molecules called microRNA165/166. But how are those microRNAs confined to the bottom side?


If the molecular balance is disturbed, leaves grow stem-like (right), instead of flattening out. PHOTO: Paz Merelo/EMBL


Normally (left), the microRNAs (green) are only found in the cells that will form the bottom side of the leaf. But in the absence of Class IIs (right) they were present throughout the young leaves. IMAGE: Paz Merelo/EMBL

Marcus Heisler’s labs at EMBL and at the University of Sydney found that the Class IIIs in the top tissues of the leaf act together with some closely related proteins, the Class IIs, to suppress the microRNAs.

When Paz Merelo, a postdoc in Heisler’s lab at EMBL, examined Arabidopsis plants in which these Class IIs were not functioning, the microRNAs were no longer inhibited in the top side of the growing leaves. 

So in the absence of Class IIs, the Class IIIs alone aren’t able to counter the microRNAs. The microRNAs can then switch off the Class IIIs on both the bottom and the top of the leaves, and consequently the leaves don’t flatten out, but grow stem-like.

“The activities of the Class III HD-ZIPs and microRNAs somehow have to be perfectly balanced, right from the beginning, to get a nice leaf,” says Heisler.  “And that seems unlikely to happen on its own: so what’s maintaining this balance?”

Heisler and colleagues are following up on the work, looking into how the balance between ‘top’ and ‘bottom’ factors is maintained, honing in on exactly how Class IIIs and Class IIs work together, and investigating other molecules that are restricted to only one side of a growing leaf.

The study was a collaboration with Stephan Wenkel’s lab at the University of Copenhagen.

  • Full bibliographic informationMerelo et al. Regulation of MIR165/166 by Class II and Class III homeodomain leucine zipper proteins establishes leaf polarity. PNAS Early Edition, to be published the week of 3 October 2016. DOI: 10.1073/pnas.1516110113

http://s.embl.org/pr031016

For further information, please contact:

Sonia Furtado

+ 49 6221 387 8263

sonia.furtado@embl.de

Sonia Furtado | AlphaGalileo

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>