Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In defence of pathogenic proteins

08.01.2016

Protein deposits in cells, such as those associated with diseases like Parkinson's and Alzheimer's, can also be beneficial – at least for yeast cells, as biochemists at ETH Zurich have discovered. The researchers found a new form of age-associated deposits in these cells, and they are now asking us to rethink our views on ageing and dementia.

We age because the cells in our bodies begin to malfunction over the years. This is the general view that scientists hold of the ageing process. For example, in older people the cells’ internal quality control breaks down.


Scientists found in yeast cells protein aggregates (light green spots). As cells age and divide, these aggregates become more frequent (micrograph).

Photo: ETH Zurich / Juha Saarikangas

This control function usually eliminates proteins that have become unstable and lost their normal three-dimensional structure. These deformed proteins accumulate in the cells in a number of diseases, such as Parkinson's and Alzheimer's.

For Yves Barral, Professor of Biochemistry at ETH Zurich, the view of the ageing process as a consequence of flawed cell function and disease is too narrow. It ignores the fact that the mentioned so-called prion-like protein accumulations could have a positive effect, too, and therefore should not be referred to as cellular malfunction, he says.

Old cells cope better with stress

Barral drew this conclusion based on his research on yeast cells. He and his colleagues recently found in these cells a new type of protein aggregate, which appears as the cells get older. As the scientists were able to show, these protein aggregates do not arise as the result of a cell's malfunctioning internal quality control. On the contrary: in yeast cells with such aggregates, quality control functions even better.

"It certainly seems that these aggregates help yeast cells to cope with the physiological changes caused by ageing," says Juha Saarikangas, a postdoc in Barral's group and first author of the recent study in the journal eLife. "We are very exited to learn what type of information is stored in these structures."

The scientists assume that these age-associated aggregates are formed by several different proteins. The researchers have already identified one prion-like protein that is part of the accumulations. What other proteins are involved and why the aggregates remain in the parent cells during cell division are subjects of further research.

Aggregates improve memory

Only in recent years have scientists speculated that aggregating proteins in the cells can generally play a positive role. Barral and his research group showed back in 2013 that yeast cells memorise experiences related to unsuccessful sexual reproduction attempts in the form of aggregated proteins.

These aggregates – which are not identical to the newly discovered age-associated accumulations – thus serve as molecular memory for yeast cells. Even in mice there is a positive relationship between prion-like aggregates and memory. A few months ago, American scientists demonstrated that mice with such accumulations in their nerve cells exhibit a more stable long-term memory.

"Bad end to a good thing"

Whether such age-associated protein accumulations are primarily a malfunction or a normal function of healthy cells is for Barral a scientific question – one in which philosophy also plays a role: "Our western society understands ageing as something that is predominantly negative, a disease that has to be combated," he says.

"This thinking is reflected in the work of many scientists, whose research on ageing focuses on finding defects in cells." Other societies, however, place more value on the positive effects of ageing, such as increased experience and knowledge – a view that corresponds with the newly discovered role of aggregates as information storage or memory for cells.

"We're still a fairly small group of scientists who say: aggregate proteins are not pathological – they are neither an accident nor a defect," says Barral. Rather, these proteins aggregate because it is their normal function. Diseases such as Parkinson's and Alzheimer's only arise when the system becomes imbalanced and too many prion-like proteins accumulate in the wrong place in the cells. Barral continues: "There are two aspects to ageing. Yes, you die at the end of the process, and this is negative. But you die wise. And Alzheimer's is perhaps a bad end to a good thing."

Reference

Saarikangas J, Barral Y: Protein aggregates are associated with replicative aging without compromising protein quality control. eLife 2015, e06197, doi: 10.7554/eLife.06197

Weitere Informationen:

https://www.ethz.ch/en/news-and-events/eth-news/news/2016/01/in-defence-of-patho...

Fabio Bergamin | ETH Zürich

Further reports about: ETH ageing process proteins three-dimensional structure

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>