Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In cordon bleus, song develops independently of sex differences in the brain

04.11.2015

In female songbirds, brain areas responsible for song learning are usually smaller and have fewer neurons compared to males. However, in many species such as the blue-capped cordon bleu, females possess an elaborate song.

Scientists from the Max Planck Institute for Ornithology in Seewiesen now found in this species pronounced sex differences in the brain already in juvenile birds, where females had up to 50% less neurons in the song control areas. However, this had no effect on the song learning process. Only when adult, females had developed a different song with shorter and simpler strophes than males.


Blue-capped cordon-bleus (Uraeginthus cyanocephalus) inspecting a Jackson golden-backed weaver nest (Ploceus jacksoni).

Wolfgang Goymann

In all songbirds investigated to date there are sex differences in those parts of the brain that are responsible for the learning and the production of song. These brain areas are smaller in females and they possess fewer neurons.

This fact is often used as an explanation why females have simpler songs than males or do not sing at all. The neuroanatomical sex differences emerge during development and have a genetic basis or are due to the action of steroid hormones. For example, female song can be induced by the male sex hormone testosterone.

Nevertheless, there are species, in particular in the tropics, where males and females sing nearly similar songs. It is assumed that the song is important for pair bonding and year-round defense of a territory and food resources. Scientists headed by Manfred Gahr from the Max Planck Institute for Ornithology in Seewiesen have for the first time investigated the development of song and the underlying neuroanatomical changes in a species with female song.

Male and female blue-capped cordon bleus that originate from East Africa, start their first vocalizations around the age of 30-40 days. The scientists analyzed different song traits during development in regular intervals and found sex differences only after the birds reached adulthood and were older than 250 days. At that time females suddenly started to sing shorter and simpler songs as their male peers of the same age.

In parallel the scientists investigated the birds’ neuroanatomical properties. Most remarkably, volume and neuron number of the song control regions HVC and RA were smaller in females compared to males from the first point of investigation at day 20 and persisted throughout the entire developmental period.

“These anatomical sex differences are present already in a very early developmental stage and precede the sex differences in song behaviour”, says Manfred Gahr. However, this is not the only amazing result. Despite these different anatomical prerequisites there is a parallel brain development in both sexes. Although the song control centers are up to 55% smaller and have 30-50% fewer neurons, females develop a song comparable to that of males. At least for song learning, these sex differences do not seam to have a functional role.

SSp/HR-MG

Weitere Informationen:

http://www.orn.mpg.de/3639057/news_publication_9725569?c=2732
http://journal.frontiersin.org/article/10.3389/fevo.2015.00117/abstract

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>