Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In between red and blue light: Researchers discover new functionality of molecular light switches

20.10.2014

Diatoms play an important role in water quality and in the global climate. They generate about one fourth of the oxygen in the Earth’s atmosphere and perform around one-quarter of the global CO2 assimilation, i.e. they convert carbon dioxide into organic substances. Their light receptors are a crucial factor in this process.

Researchers at Leipzig University and the Helmholtz Centre for Environmental Research have now discovered that blue and red light sensing photoreceptors control the carbon flow in these algae. These results have been recently published by the scientists in the well-known online trade journal, PLOS ONE.


Microscopical picture of a diatom.

Photo: Leipzig University, Christian Wilhelm

“Diatoms display a special way of reacting to light and adapting their metabolism to the changing light conditions in the water", says Prof. Dr. Christian Wilhelm, Head of the Plant Physiology Department at Leipzig University.

“For the first time, we have been able to show that the light receptors, which measure the intensity of the blue or red light, not only change the genetic transcription, but also directly control the activity of enzymes in the metabolism."

A rapid light change from blue light to red light and vice versa does not influence the photosynthesis output, but the metabolism is drastically reversed within 15 minutes. “This way, cells that have grown in red light, which continue to be cultivated in a blue light environment can still perform photosynthesis, but can no longer grow.”

These “light switches” can be used to control the carbon flow in cells. The evidence for this was provided using the MetaPro metabolomic platform established at the Helmholtz Centre for Environmental Research. “This opens up new ways for the biotechnological control of cells”, explains Christian Wilhelm.

“This work is further evidence of the added-value of intensive cooperations between non-university and university institutions, particularly with the Faculty of Biosciences, Pharmacy and Psychology”, Prof. Martin von Bergen, Spokesman of the Department of Metabolomics at the UFZ and one of the co-authors, is pleased to say.

The Leipzig-based algae experts in plant physiology at Leipzig University already drew attention to itself two years ago with another publication: Together with scientists from Karlsruhe and Bremen, they provided evidence that sunlight can be converted into pure natural gas in a highly efficient manner with the aid of microorganisms. In doing so, the metabolism of green algae is reversed.

The publication about the diatoms:
The Acclimation of Phaeodactylum tricornutum to Blue and Red Light Does Not Influence the Photosynthetic Light Reaction but Strongly Disturbs the Carbon Allocation Pattern
DOI: 10.1371/journal.pone.0099727

The publication about the green algae:
Methane production from glycolate excreting algae as a new concept in the production of biofuels
DOI: 10.1016/j.biortech.2012.06.120

Contacts:
Prof. Dr. Christian Wilhelm
Institut for Biology, Plant Physiology
Tel: 0341-97-36874
E-mail: cwilhelm@rz.uni-leipzig.de
Internet: http://www.uni-leipzig.de/~pflaphys/

Prof. Dr. Martin von Bergen, Dr. Sven Baumann
Department of Metabolomics at the Helmholtz Centre for Environmental Research
Tel.: 0341-235-1211, -1099
E-mail: martin.vonbergen@ufz.de
E-mail: sven.baumann@ufz.de
Internet: http://www.ufz.de/index.php?de=17634
Internet: http://www.ufz.de/index.php?de=18274

Weitere Informationen:

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0099727 The publication about the diatoms
http://www.sciencedirect.com/science/article/pii/S0960852412010395 The publication about the green algae

Carsten Heckmann | Universität Leipzig

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>