Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Performance for Solar Cells

04.12.2012
Highly efficient p-type dye-sensitized solar cell with cobalt-based electrolyte

Photovoltaics continues to be an expensive technology. Dye-based solar cells may represent a more cost-effective alternative to traditional solar cells. In these cells, a dye is used in place of a semiconductor to trap the light.

Tandem cells consisting of both a conventional n-type and an “inverse” p-type dye-sensitized solar cell seem to be especially promising. In the journal Angewandte Chemie, a team of Australian and German scientists has now reported a significant increase in the degree of efficiency of p-type dye-sensitized solar cells through use of an electrolyte based on a cobalt complex.

Conventional n-type dye-sensitized solar cells use a photoanode, a positive electrode coated with an n-type semiconductor, such as titanium dioxide, and a dye. When light strikes the electrode, the dye molecules become excited and release electrons—negative charges, hence the n in n-type—and “inject” them into the n-type semiconductor.

The redox mediator, a component of the electrolyte that can move freely between the electrodes, regenerates the dye by resupplying it with electrons from the counter electrode. In a p-type cell, the process is reversed: a special dye and a p-type semiconductor are located on a photocathode.

The light-activated dye “sucks” electrons out of the valence band of a p-type semiconductor such as nickel oxide. This effectively transfers “electron holes”—positive charges, hence the p in p-type—from the dye. The redox mediator takes the electrons from the dye and hands them over to the counter electrode.

A very promising approach for increasing the performance of photovoltaic cells is to combine both an n-type and a p-type dye-sensitized solar cell to make a tandem cell. However, despite some progress, the performance of the p-type cells still significantly lags behind that of their n-type counterparts. An international team of researchers from Monash University and the Commonwealth Scientific and Industrial Research Organization (Australia), as well as the University of Ulm (Germany), have now achieved a considerable improvement in the efficiency of p-type cells by choosing a different redox mediator.

Researchers working with Udo Bach and Leone Spiccia replaced the previous, commonly used iodide and triiodide system with a well-known cobalt complex, tris(ethylenediamine)cobalt(II)/(III), in which the cobalt can switch between the +2 and +3 oxidation states. The advantage of this system is that the redox potential is significantly lower. As a result, the open-circuit voltage, a critical parameter for solar cells, is doubled and there is still a high enough driving force to ensure rapid and efficient regeneration of the spent dye.

These devices achieve an energy-conversion efficiency of 1.3 %, while previous systems attained a maximum of only 0.41 %. The p-type dye-sensitized solar cell with the cobalt-based redox mediator even gave promising performance data under diffuse sunlight experienced on cloudy days.

About the Author
Dr Udo Bach is an Associate Professor at Monash University and holds joint appointments at the Commonwealth Scientific and Industrial Research Organization, and the Melbourne Centre for Nanofabrication. His main specialties are dye-sensitised solar cells and nanofabrication technology, combining conventional 'top-down' approaches with new 'bottom-up' assembly techniques.
Author: Udo Bach, Monash University, Clayton (Australia), http://www.udobach.com/Bachgroup/Contact.html
Title: Highly Efficient p-Type Dye-Sensitized Solar Cells based on Tris(1,2-diaminoethane)Cobalt(II)/(III) Electrolytes

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201206219

Udo Bach | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>