Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Mussel Adhesive

13.04.2012
Biocompatible, waterproof, self-healing, and reversible: A new adhesive for medical applications?
ussels are true masters of adhesion. They bond solidly under water to nearly any type of surface. Researchers from Mainz have been inspired by mussel adhesive proteins to add another exciting property. As they report in the journal Angewandte Chemie, their new adhesive can be debonded on demand.

Glue was previously considered to be a cheap and flimsy solution. However, modern adhesives are very high-tech, for example, they can hold together the aerofoils of airplanes. However, three items persist on the wish lists of adhesion scientists: reliable bonding under water, for fixing leaks in underwater pipelines or sealing bleeding wounds during operations; “self-healing” adhesives that would prevent catastrophic failure; and adhesives that can be debonded “on demand” with no residue, for easy replacement of components or dismantling composites for recycling.

In nature there are astonishingly robust, strongly bonding, universal adhesives that meet the first two requirements: mussels use them to stick to nearly all types of surfaces, from rocks to wooden posts to the metal hulls of ships. The amino acid dihydroxyphenylalanine (DOPA) is critical to this amazing adhesive effect. The DOPA groups contained in the adhesive react stepwise under the conditions prevalent in seawater to form a cross-linked polymer matrix capable of bonding to inorganic oxides in rock. They also bind to polyvalent metal ions, such as iron ions, in seawater, which give the mussel adhesive self-healing properties.

Researchers working with Aránzazu del Campo at the Max Planck Institute for Polymer Research in Mainz have taken inspiration from these mussel adhesives. They produced four-armed, star-shaped polymers with nitrodopamine groups attached to their ends. These groups are related to DOPA and help the adhesive to cross-link under water and give it self-healing properties. It only takes a few minutes for a cut gel sample of this material to grow back together. The nitro groups (-NO2) also provide this mussel-adhesive-inspired material with another bonus: the molecules can be split by irradiation with UV light, so the adhesive can be debonded.

The Mainz team has thus laid the foundation for a class of adhesives that are waterproof, heal themselves, react with surfaces, degrade with light, and are biocompatible. Surfaces coated with this adhesive also provide an excellent substrate for cell cultures. The primary application for this new material may thus be in medicine, possibly as removable hydrogel pads for skin regeneration or as a reversible superglue for repeated operations.

About the Author
Dr Aránzazu del Campo is a Minerva Group Leader at the Max Planck Institute for Polymer Research. Her main specialty is bioinspired surfaces with tunable properties.
Author: Aránzazu del Campo, Max-Planck-Institut für Polymerforschung, Mainz (Germany), http://www.mpip-mainz.mpg.de/groups/campo/Contact
Title: Bioinspired Underwater Bonding and Debonding on Demand
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201108629

Aránzazu del Campo | Angewandte Chemie
Further information:
http://www.mpip-mainz.mpg.de/groups/campo/Contact

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>