Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved method for isotope enrichment could secure a vital global commodity

30.06.2014

Researchers at The University of Texas at Austin have devised a new method for enriching a group of the world's most expensive chemical commodities, stable isotopes, which are vital to medical imaging and nuclear power, as reported this week in the journal Nature Physics. For many isotopes, the new method is cheaper than existing methods. For others, it is more environmentally friendly.


This is a still frame from an artist's animated rendering of the MAGIS Device (magnetically activated and guided isotope separation). To begin the MAGIS process, unpurified ore is vaporized and enters an optical pumping region where a one-watt laser (red beam) tuned to a specific wavelength magnetizes only the particles of the desired isotope so that they are repelled by a magnetic field. The magnetized and unmagnetized particles enter a curved tunnel lined with permanent magnets, called a wave guide. The particles must follow the curve to make it to the collector at the end, but can only do so if repelled by the magnetic field. Since only the particles of one isotope are magnetized (blue dots), only those particles make the trip and end up in the collector. The MAGIS method was developed by Mark Raizen, Tom Mazur and Bruce Klappauf. The full animation can be viewed at https://www.youtube.com/watch?v=zIRi-7AxFAM.

Credit: ©Marianna Grenadier, College of Natural Sciences, The University of Texas at Austin.

A less expensive, domestic source of stable isotopes could ensure continuation of current applications while opening up opportunities for new medical therapies and fundamental scientific research.

Chemical elements often exist in nature as a blend of different variants called isotopes. To be useful in most applications, a single isotope has to be enriched, or separated out from the rest.

A combination of factors has created a looming shortage of some of the world's most expensive but useful stable isotopes.

Last year, the Government Accountability Office released a report warning that there may soon be a shortage of lithium-7, a critical component of many nuclear power reactors. Production of lithium-7 was banned in the U.S. because of environmental concerns, and it's unclear whether the current sources, in China and Russia, will continue meeting global demand.

One of the major sources of molybdenum-99, essential for medical imaging in tens of millions of heart, kidney and breast procedures each year, is an aging nuclear reactor in Canada that's expected to cease operations in 2016. Other valuable isotopes are produced by Cold War era machines known as calutrons operating in Russia. Their extreme age, high operating costs and regional concentration further threaten global supply.

"Isotopes are among the most expensive commodities on Earth," says Mark Raizen, professor of physics in The University of Texas at Austin's College of Natural Sciences and author on the study. "One ounce of a stable isotope that needs the calutron to separate it can run around $3 million. That's roughly 2,000 times the price of gold. And that has held back certain medical therapies."

Unlike the calutron, which requires huge amounts of energy to maintain a magnetic field with electromagnets, the new method for enriching stable isotopes, called MAGIS (magnetically activated and guided isotope separation), needs little energy due to its use of low-powered lasers and permanent magnets. It also has less potential for environmental effects than the chemical process used in producing lithium-7, which has been linked to mercury contamination.

View an animation of the MAGIS device in action and read more about how it works here: https://www.youtube.com/watch?v=zIRi-7AxFAM.

Nuclear medicine in particular could benefit from the new method, the researchers say. Many stable isotopes are precursors to the short-lived radioisotopes used in medical imaging, cancer therapies and nutritional diagnostics.

The new method also has the potential to enhance our national security. The researchers used the method to enrich lithium-7, crucial to the operation of most nuclear reactors. The U.S. depends on the supply of lithium-7 from Russia and China, and a disruption could cause the shutdown of reactors. Other isotopes can be used to detect dangerous nuclear materials arriving at U.S. ports.

Raizen's co-authors on the paper are Tom Mazur, a Ph.D. student at the university; and Bruce Klappauf, a software developer at Enthought and a former senior research scientist at UT Austin.

Now, Raizen's top goal is getting this technology out of the lab and into the world. The MAGIS invention has been issued a U.S. patent, which is owned by The University of Texas at Austin, with Raizen and Klappauf as inventors.

Raizen plans to create a nonprofit foundation to license the technology.

"I believe this is world-changing in a way that is unique among all the projects that I have done. And I do feel passionately about it," said Raizen. "There are many potential uses of isotopes that we don't even know yet. But they've been held back because the price has been so high, or it's been unavailable. That will be one of the missions of the foundation — to explore and develop isotopes to benefit humanity."

Some critics have raised concerns about the potential for terrorists or rogue states to use MAGIS to enrich uranium for nuclear weapons. Raizen believes these concerns are unfounded given uranium's unique chemical characteristics. Read an online debate between Raizen and Francis Slakey, a physicist and associate director of public affairs for the American Physical Society here: http://www.aps.org/publications/apsnews/201301/backpage.cfm.

###

This research was funded by The University of Texas at Austin.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest of its researchers. Dr. Raizen has submitted required financial disclosure forms with the university. He has received research funding for other projects from the Texas Higher Education Coordinating Board, the Welch Foundation, the National Science Foundation and the U.S. Department of Energy. Klappauf and Mazur have no financial ties to the isotope industry or isotope consumers.

More Info

For a global map showing where molybdenum-99 (Mo-99) is enriched, the steps to produce it and the challenges to the global supply, go to: http://www.mallinckrodt.com/Nuclear_Imaging/Global_Mo-99_Supply_Chain.aspx

Steve Franklin | Eurek Alert!

Further reports about: Earth Foundation Nuclear isotope isotopes molybdenum-99 stable isotopes therapies

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>