Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Improved method for isotope enrichment could secure a vital global commodity


Researchers at The University of Texas at Austin have devised a new method for enriching a group of the world's most expensive chemical commodities, stable isotopes, which are vital to medical imaging and nuclear power, as reported this week in the journal Nature Physics. For many isotopes, the new method is cheaper than existing methods. For others, it is more environmentally friendly.

This is a still frame from an artist's animated rendering of the MAGIS Device (magnetically activated and guided isotope separation). To begin the MAGIS process, unpurified ore is vaporized and enters an optical pumping region where a one-watt laser (red beam) tuned to a specific wavelength magnetizes only the particles of the desired isotope so that they are repelled by a magnetic field. The magnetized and unmagnetized particles enter a curved tunnel lined with permanent magnets, called a wave guide. The particles must follow the curve to make it to the collector at the end, but can only do so if repelled by the magnetic field. Since only the particles of one isotope are magnetized (blue dots), only those particles make the trip and end up in the collector. The MAGIS method was developed by Mark Raizen, Tom Mazur and Bruce Klappauf. The full animation can be viewed at

Credit: ©Marianna Grenadier, College of Natural Sciences, The University of Texas at Austin.

A less expensive, domestic source of stable isotopes could ensure continuation of current applications while opening up opportunities for new medical therapies and fundamental scientific research.

Chemical elements often exist in nature as a blend of different variants called isotopes. To be useful in most applications, a single isotope has to be enriched, or separated out from the rest.

A combination of factors has created a looming shortage of some of the world's most expensive but useful stable isotopes.

Last year, the Government Accountability Office released a report warning that there may soon be a shortage of lithium-7, a critical component of many nuclear power reactors. Production of lithium-7 was banned in the U.S. because of environmental concerns, and it's unclear whether the current sources, in China and Russia, will continue meeting global demand.

One of the major sources of molybdenum-99, essential for medical imaging in tens of millions of heart, kidney and breast procedures each year, is an aging nuclear reactor in Canada that's expected to cease operations in 2016. Other valuable isotopes are produced by Cold War era machines known as calutrons operating in Russia. Their extreme age, high operating costs and regional concentration further threaten global supply.

"Isotopes are among the most expensive commodities on Earth," says Mark Raizen, professor of physics in The University of Texas at Austin's College of Natural Sciences and author on the study. "One ounce of a stable isotope that needs the calutron to separate it can run around $3 million. That's roughly 2,000 times the price of gold. And that has held back certain medical therapies."

Unlike the calutron, which requires huge amounts of energy to maintain a magnetic field with electromagnets, the new method for enriching stable isotopes, called MAGIS (magnetically activated and guided isotope separation), needs little energy due to its use of low-powered lasers and permanent magnets. It also has less potential for environmental effects than the chemical process used in producing lithium-7, which has been linked to mercury contamination.

View an animation of the MAGIS device in action and read more about how it works here:

Nuclear medicine in particular could benefit from the new method, the researchers say. Many stable isotopes are precursors to the short-lived radioisotopes used in medical imaging, cancer therapies and nutritional diagnostics.

The new method also has the potential to enhance our national security. The researchers used the method to enrich lithium-7, crucial to the operation of most nuclear reactors. The U.S. depends on the supply of lithium-7 from Russia and China, and a disruption could cause the shutdown of reactors. Other isotopes can be used to detect dangerous nuclear materials arriving at U.S. ports.

Raizen's co-authors on the paper are Tom Mazur, a Ph.D. student at the university; and Bruce Klappauf, a software developer at Enthought and a former senior research scientist at UT Austin.

Now, Raizen's top goal is getting this technology out of the lab and into the world. The MAGIS invention has been issued a U.S. patent, which is owned by The University of Texas at Austin, with Raizen and Klappauf as inventors.

Raizen plans to create a nonprofit foundation to license the technology.

"I believe this is world-changing in a way that is unique among all the projects that I have done. And I do feel passionately about it," said Raizen. "There are many potential uses of isotopes that we don't even know yet. But they've been held back because the price has been so high, or it's been unavailable. That will be one of the missions of the foundation — to explore and develop isotopes to benefit humanity."

Some critics have raised concerns about the potential for terrorists or rogue states to use MAGIS to enrich uranium for nuclear weapons. Raizen believes these concerns are unfounded given uranium's unique chemical characteristics. Read an online debate between Raizen and Francis Slakey, a physicist and associate director of public affairs for the American Physical Society here:


This research was funded by The University of Texas at Austin.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest of its researchers. Dr. Raizen has submitted required financial disclosure forms with the university. He has received research funding for other projects from the Texas Higher Education Coordinating Board, the Welch Foundation, the National Science Foundation and the U.S. Department of Energy. Klappauf and Mazur have no financial ties to the isotope industry or isotope consumers.

More Info

For a global map showing where molybdenum-99 (Mo-99) is enriched, the steps to produce it and the challenges to the global supply, go to:

Steve Franklin | Eurek Alert!

Further reports about: Earth Foundation Nuclear isotope isotopes molybdenum-99 stable isotopes therapies

More articles from Life Sciences:

nachricht High-arctic butterflies shrink with rising temperatures
07.10.2015 | Aarhus University

nachricht Long-term contraception in a single shot
07.10.2015 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>