Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved method for capturing proteins holds promise for biomedical research

17.08.2011
Antibodies are the backbone of the immune system—capable of targeting proteins associated with infection and disease. They are also vital tools for biomedical research, the development of diagnostic tests and for new therapeutic remedies.

Producing antibodies suitable for research however, has often been a difficult, costly and laborious undertaking.

Now, John Chaput and his colleagues at the Biodesign Institute at Arizona State University have developed a new way of producing antibody-like binding agents and rapidly optimizing their affinity for their target proteins. Such capture reagents are vital for revealing the subtleties of protein function, and may pave the way for improved methods of detecting and treating a broad range of diseases.

The team's results appear in today's issue of the journal ChemBioChem.

Antibodies are Y-shaped structures, capable of binding in two or more places with specific target proteins. Synthetic antibodies are much simpler forms that attempt to mimic this behavior. As Chaput explains, creating affinity reagents with strong binding properties can be accomplished by combining two weak affinity segments on a synthetic scaffold. The resulting affinity reagent, if properly constructed, can amplify the binding properties of the individual segments by two or three orders of magnitude.

"This dramatic change in affinity has the ability to transform ordinary molecules into a high affinity synthetic antibody," Chaput says. "Unfortunately, the chemistry used to make these reagents can be quite challenging and often requires a lot of trial-and-error. With NIH funding, my group has reduced the complexity of this problem to simple chemistry that is user friendly and easily amenable to high throughput automation. Such technology is absolutely necessary if we want to compete with traditional monoclonal antibody technology. "

Traditionally, antibodies for research have been extracted from animals induced to produce them in response to various protein antigens. While the technique has been invaluable to medical science, obtaining antibodies in this way is a cumbersome and costly endeavor. Instead, Chaput and his team produce synthetic antibodies that do not require cell culture, in vitro selection or the application of complex chemistry. They call their reagents DNA synbodies.

The new strategy—referred to as LINC (for Ligand Interaction by Nucleotide Conjugates) uses DNA as a programmable scaffold to determine the optimal distance needed to transform two weak affinity binding segments or ligands into a single high affinity protein capture reagent. The result is an artificial antibody, capable of binding to its antigen target with both high affinity and high specificity. The process is rapid and inexpensive. It also offers considerable flexibility, as the distance between the two ligand components bonded to the short, double-stranded DNA scaffold can be fine-tuned for optimum affinity.

In earlier work, the group identified ligand candidates by producing thousands of random sequence peptide chains—strings of amino acids, connected like pearls on a necklace. The peptide sequences were affixed to a glass microarray slide and screened against a target protein to pinpoint those that were capable of recognizing distinct protein binding sites. Two promising ligand candidates could then be combined to form a DNA synbody.

In the current study, the group instead makes use of pre-existing ligands with documented affinity for various disease-related proteins. The method involves the use of well-characterized ligands as building components for high quality DNA synbodies, eliminating the initial screening procedure and expanding the potential to tinker with the two-piece synbody in order to optimize affinity.

The peptides of choice for the study were those with high affinity for something called growth factor receptor bound protein 2 (Grb2). Grb2 has many cell-signaling functions and is an important focus of research due to its association with cellular pathways involved in tumor growth and metastasis.

By scouring the scientific literature, the group identified two peptides that recognize distinct sites on the surface of Grb2. Chaput points out, "this is a nice example where a few hours in the library can save you weeks in the lab."

The next step was to create an assortment of synbody constructs based on these peptides. To do this, one peptide was attached to the end of a short DNA strand, while the other peptide was attached to the complementary DNA strand further along its length (see figure 1).

The two peptide strands could be attached to the scaffold in either a forward or reverse direction and could be interchanged, with either occupying the terminal end of the first DNA strand. Further, the distance between peptide segments along the DNA strands could be adjusted to yield the best target affinity.

Experiments examined binding affinity for peptide chains separated by 3, 6, 9, 12, 15 and 18 base pairs along the DNA strand, (a distance range of 1.0-6.1 nm). Inspection revealed the best results for a synbody constructed of peptides separated by 12 base pairs at a distance of 4.1 nm, compared with the other 5 constructs.

The results for the best synbody in the study were impressive, demonstrating a binding affinity five- to ten-fold stronger than commercially available antibodies for Grb2, despite the synbody's comparatively primitive architecture. In further tests, the synbody was shown to exhibit high specificity—isolating Grb2 from other proteins in a complex biological mixture and selectively binding with its target.

The technique offers a new approach to producing high qualityaffinity reagents for disease research, diagnostic testing and the development of effective therapeutics.

Joseph Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>