Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to improve vaccines to trigger T cell as well as antibody response

07.09.2009
New hypothesis suggests ways to engineer attenuated pathogens to look more alive

Killed or disabled viruses have proven safe and effective for vaccinating billions worldwide against smallpox, polio, measles, influenza and many other diseases.

But killed or severely "attenuated" vaccines, which are safer than "live" vaccines, have been largely unsuccessful for many non-viral diseases, including illnesses like tuberculosis and malaria.

A new study by researchers from the University of California, Berkeley, and Berkeley-based Aduro BioTech provides clues why killed and severely attenuated vaccines don't always work. It also suggests ways to engineer an attenuated vaccine to make it as potent as a live vaccine but as safe as a killed vaccine.

"It's not only that these killed or attenuated vaccines can't immunize, it's that they also suppress immunity," said co-author Daniel Portnoy, UC Berkeley professor of molecular and cell biology and of public health. "What this says is that the immune system knows the difference between a live bug that's virulent and a dead one that is harmless."

The study, which appears in the Sept. 4 online edition of the journal PLoS Pathogens, suggests that for killed or severely attenuated non-viral vaccines to work – and for viral vaccines to work better – it's necessary to make the microbes act as if they're alive.

"In general, killed vaccines have not lived up to the potency of live vaccines, and our finding might partially explain this observation," said co-author Dirk Brockstedt, director of research and development at Aduro. "The finding is really key for us to develop a strategy to select new bacterial strains that induce the right kind of immune response."

The findings support a new hypothesis about how the innate immune system distinguishes pathogenic from non-pathogenic microbes, proposed by Portnoy, UC Berkeley colleague Russell Vance, assistant professor of molecular and cell biology, and Ralph Isberg of Tufts University in the July 23 issue of the journal Cell Host & Microbe. They argue that it's not only how a pathogen looks that determines how the immune system responds, but also how it acts – where it goes in the cell, what pathways it interferes with, and how disruptive it is.

"There are a series of different things that pathogens have to do in order to be pathogenic, so it makes sense for the immune system to try to detect these common patterns," Vance said. "We know already that there are surveillance pathways in the cytosol that seem to respond specifically to pathogens and not to non-pathogens."

The findings are most important for creating effective vaccines against pathogens – bacteria, parasites and viruses – that live and hide inside cells. While some pathogens, such as viruses, can be knocked back when they exit one cell to infect another – hence the effectiveness of some antiviral vaccines – other intracellular pathogens never completely leave the cell.

A vaccine against these intracellular pathogens would need to induce a so-called cellular or T cell response that is not effectively induced by current available vaccines, Brockstedt said.

A delicate balance

The body's immune system is a complex interplay of activation and suppression that operates to keep the body in a balanced state with no inflammation until it's needed, Portnoy said. The first line of defense against invading pathogens is the innate immune system, which deploys when the body recognizes characteristics of viruses and microbes that are common enough that they have been programmed into our genes and are with us from birth.

The more sophisticated system, however, is the acquired or adaptive immune system, which kicks in after the innate immune response. It recognizes unique aspects of pathogens – the proteins and sugars that they sport and generates antibodies to latch onto and target them for destruction. It also mobilizes T cells to attack the invaders or, more importantly, infected cells.

Listeria generates one of the strongest immune responses of any intracellular pathogen, which makes it a promising vehicle to deliver antigens that will immunize against a range of illnesses, from cancer to HIV. Portnoy has studied Listeria bacteria for 22 years to understand why it is so immunogenic, and how Listeria can be used as a vaccine without itself inflaming the immune system and causing disease.

Based on their and other experiments, Portnoy and Vance argue that the immune system looks at more than the microbe's coat, but also at how the microbe behaves. Listeria bacteria, for example, enter macrophage cells by luring these cells to engulf them. Once inside the phagosome, or stomach, of the macrophage, the bacteria secrete proteins that punch holes in the phagosome that allow the bacteria to spread throughout the guts of the cell, the cytosol.

It has been known for decades that killed Listeria vaccines don't provide protective immunity. It was believed that failure to reach the cytosol was the major reason. In earlier experiments, Portnoy and others found that mutant strains of Listeria that are not able to break out of the phagasome fail to stimulate an immune response. The current study shows why.

Killed Listeria suppress immune system

Portnoy, Brockstedt, Keith S. Bahjat of the Earle A. Chiles Research Institute in Portland, Ore., and Nicole Meyer-Morse of UC Berkeley's Department of Molecular and Cell Biology injected mice with a mixture of attenuated, but live, bacteria that stimulate a good immune response and dead bacteria that produce no response. They found that the cells' response to this mixture was less than if the researchers had injected only the effective vaccine.

"You would think, 'Why wouldn't the immunogenic strain still immunize?' But by having the non-immunogenic strain, it suppressed immunity," Portnoy said.

The implication, the researchers argue, is that the innate immune system monitors behavior as well as the antigens on the surface of invaders to know how aggressively to respond. The initial response of the innate immune system determines the level of response of the acquired immune system.

"You need to have an innate response to get adaptive responses to occur properly," Vance said. "For example, a killed virus might stimulate certain kinds of innate signals that lead to good antibody production, but might not generate the right response to properly activate T cells."

"Potentially, if we could figure out what kinds of responses are the ones that are really best at inducing immunization, this could have a lot of importance for how we design vaccines in the future," Vance added.

New vaccines for cancer, salmonella, anthrax

Portnoy's work has already led to two promising Listeria-based vaccines. Aduro's predecessor, Anza Therapeutics, collaborated with Portnoy to produce live, attenuated Listeria vaccines against cancer and hepatitis C that have been evaluated for safety in Phase I clinical trials. Aduro is continuing this line of work but is also developing what it calls a killed, but metabolically active (KBMA), form of Listeria to serve as a vaccine vector for a range of infectious diseases.

KBMA retains the ability to break out of the cell's stomach into the cell's cytosol, just like live Listeria, but, unlike live Listeria, it is unable to grow, said Portnoy. The KBMA strategy has also been extended to salmonella bacteria and, most recently, to anthrax, as reported by Portnoy and Aduro colleagues in the April 2009 issue of the journal Infection and Immunity.

But Portnoy has hopes that Listeria can do even better. His lab is currently searching for mutant strains of Listeria that can mimic the behavior of live bacteria even when killed or attenuated.

"The field has moved so rapidly that we now have the opportunity to make designer vaccines that can be used for many different applications," Portnoy said, noting that he has engineered Listeria to express foreign genes, turn on various immune pathways, and even pop or not pop. "We can make Listeria dance the salsa."

"The whole battle with vaccines is that you want them to be completely immunogenic and completely avirulent and safe, which today is a disconnect," Portnoy said. "We would like to enable this, so that we can have a completely safe and fully immunogenic vaccine. That is what everyone wants."

Authors of the PLoS Pathogens paper include Portnoy, Brockstedt, Bahjat and Meyer-Morse, in addition to Edward E. Lemmens and Thomas W. Dubensky, formerly of Anza Therapeutics, and Jessica A. Shugart of the Providence Cancer Center in Portland.

The work was funded by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>