Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important Human Genetic Structures Identified for the First Time

10.10.2011
Genetic information transferred within cells plays an essential role both in the healthy function of the human body and in changes within cells that can trigger serious disease.

New research led by Dmitry Temiakov, Ph.D., of UMDNJ-School of Osteopathic Medicine, has identified important mechanisms of this genetic transfer process for the first time. These new findings, published in the journal Nature, open the door to developing potential therapies for several serious diseases including cancers. They also add to basic knowledge of the functioning of the healthy human body.

Each human cell harbors small organelles called mitochondria, which are responsible for the energy production of the cell, and therefore are often called the cell’s "power plant." Mitochondria contain their own genome which is maternally inherited and encodes numerous genes of proteins that are involved in energy production. Mitochondria are also believed to fuel harmful processes that can lead to the development of conditions that include diabetes, cancer and Parkinson’s disease, as well as the onset of cognitive impairment and other conditions associated with aging.

Because of this, therapy that targets the actions of mitochondria may be a promising strategy for mitigating and even reversing these illnesses, making understanding of molecular mechanisms of mitochondrial gene expression an important goal for researchers.

The current research sought to uncover structural information about mitochondrial (human) RNA polymerase, the key enzyme in the process of transferring genetic information from mitochondrial DNA to RNA, the molecule that carries that information to structures within cells that govern those cells’ function in the body. Mitochondrial RNA polymerase does not directly share its sequence or structural homology (common evolutionary origin) with large multi-subunit cellular RNA polymerases, the variety that appears in organisms such as bacteria and also in the nuclei of human cells. The lack of commonality between two distinct varieties of polymerase that coexist within human cells has intrigued the scientific community. Thus, the structure of multi-subunit RNA polymerase II has been a subject of intensive studies, including by Nobel Laureate Roger Kornberg. In 1984 David Clayton and colleagues demonstrated that mitochondrial RNA polymerase is related to a polymerase found in a small virus of E.coli bacterium, called phage T7. This was a surprising finding since it is believed that mitochondria originated from an endosymbiotic relationship (where one organism hosts the other) formed between bacteria and eukaryotes (cells that are the building blocks of organisms that include humans) and thus that the majority of mitochondrial proteins have bacterial homologies. Until now, specific structures and pathways involved could not be identified.

The team led by Temiakov sought to make such an identification by teaming up with the lab of one of the world's leading crystallographers, Prof. Patrick Cramer in Gene Center, Munich, Germany (http://www.lmb.uni-muenchen.de/cramer/patrickCramer/index.htm). The project was initiated about four years ago but only last year the team was able to obtain large, well-diffracting crystals of an active form of human mitochondrial polymerase. The structure was solved in Cramer's lab and reveals the mechanistic adaptations that occurred during evolution of a self-sufficient T7-like RNA polymerase to become regulated by transcription initiation factors. It is the first-ever representation of mitochondrial polymerase.

Temiakov says he and his colleagues were thrilled to make their discovery. “I would compare our own excitement about this structure with what anthropologists experience when they find an ancient hominid and can see changes in the skull and other bones that occurred during an evolution and resulted in modern human beings.”

The structural information can be used to understand how mitochondrial polymerase binds DNA, interacts with other mitochondrial proteins and regulates expression of mitochondrial genes under different conditions. This knowledge will guide many future biochemical and genetic experiments and will help to validate mitochondrial polymerase as a therapeutic target.

Journalists who wish to interview Dmitry Temiakov, Ph.D., are invited to contact Rob Forman, UMDNJ Chief of News Services, at 973-972-7276 or formanra@umdnj.edu .

The University of Medicine and Dentistry of New Jersey (UMDNJ) is the nation's largest free-standing public health sciences university with more than 6,000 students on five campuses attending the state's three medical schools, its only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and New Jersey’s only school of public health. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, which provides a continuum of healthcare services with multiple locations throughout the state.

Rob Forman | Newswise Science News
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>