Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important adjustment process between the sense of balance and the eyes deciphered

24.06.2011
Our eyes must be tightly coupled with our sense of balance to provide sharp and jitter-free images.

If the adjustment is disturbed, our view is blurred and we get dizzy. Scientists at the Bernstein Center Munich, the LMU München and the Integrated Research and Treatment Center IFB-LMU have now deciphered an important step of this interaction; whether certain neurons transmit information about the start or the duration of the movement depends entirely on a single type of membrane channel and the cells’ interconnections. Optimized therapies against vertigo and the development of jitter-free camera systems could benefit from this research.

Just three steps in the brain are necessary for processing data from the vestibular system and transferring them to the eye muscles. This allows the visual system to adjust to head movements within a fraction of a second. While in the first and last step, information is mainly transferred from the sensors and to the muscles, respectively, the second step is where the essential processing takes place. Scientists found that neurons with different properties are involved in this step: one type is only active during the initiation of a movement, while the other type sends signals during the entire movement. Recently, Dr. Stefan Glasauer, researcher at the Bernstein Center Munich and at the Ludwig-Maximilians-Universität München, and his PhD student Christian Rössert, in collaboration with Prof. Hans Straka, Neurobiologist at the LMU, have found out why this is so. In their study, presented in the Journal of Neuroscience*, they used the already well-understood balance organ of grass frogs.

Based on experimental data, the scientists created computer simulations that reproduced the information processing of these nerve cells. “In the simulation, we can supply the cells with any combination of ion channels, connect them in any way, and measure their behavior,” explains Glasauer about the advantages of the models. And even more: “We can even make the simulated frog jump, in order to test its data processing," says Glasauer. First, the researchers examined in a simulated single cell the influence of certain membrane channels on the transmission of incoming stimuli. They found that cells with two different membrane channels have different functions: channels with the first type were suitable for the processing of the exact movement initiation time, while the other type discharged for the entire stimulus duration. In simulations with a number of nerve cells, Glasauer and Rössert found that the interconnection of the cells also plays an important role in processing. “The combination of experimental biology and modeling significantly helped in understanding essential basics of sensorimotor information processing,” says Glasauer. The results are also relevant for clinical and technical research.

Besides others, patients with cerebellar damage could benefit from these research results. The affected individuals have problems in compensating rapid head movements by appropriate eye movements, but no problems in compensating for smooth movements. This might be due to a deficit in one of the two cell types. The highly efficient neuronal processing could also serve as a model for jitter-free camera systems that are used, for example, in driver assistance systems of cars or helicopters.

*Original publication:
Rössert C, Moore L, Straka H, Glasauer S (2011), Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise, J Neurosci, Volume 31, issue 23, 8359-8372

For further information please contact:

Dr. Stefan Glasauer
Bernstein Center Munich and
Ludwig-Maximilians-Universität München
Department of Neurology
Marchioninistr. 15,
81377 Munich, Germany
Phone: +49-89-7095-4839
E-mail: sglasauer@nefo.med.uni-muenchen.de

Johannes Faber | idw
Further information:
http://www.bccn-munich.de
http://www.nncn.de
http://www.lmu.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>