Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important adjustment process between the sense of balance and the eyes deciphered

24.06.2011
Our eyes must be tightly coupled with our sense of balance to provide sharp and jitter-free images.

If the adjustment is disturbed, our view is blurred and we get dizzy. Scientists at the Bernstein Center Munich, the LMU München and the Integrated Research and Treatment Center IFB-LMU have now deciphered an important step of this interaction; whether certain neurons transmit information about the start or the duration of the movement depends entirely on a single type of membrane channel and the cells’ interconnections. Optimized therapies against vertigo and the development of jitter-free camera systems could benefit from this research.

Just three steps in the brain are necessary for processing data from the vestibular system and transferring them to the eye muscles. This allows the visual system to adjust to head movements within a fraction of a second. While in the first and last step, information is mainly transferred from the sensors and to the muscles, respectively, the second step is where the essential processing takes place. Scientists found that neurons with different properties are involved in this step: one type is only active during the initiation of a movement, while the other type sends signals during the entire movement. Recently, Dr. Stefan Glasauer, researcher at the Bernstein Center Munich and at the Ludwig-Maximilians-Universität München, and his PhD student Christian Rössert, in collaboration with Prof. Hans Straka, Neurobiologist at the LMU, have found out why this is so. In their study, presented in the Journal of Neuroscience*, they used the already well-understood balance organ of grass frogs.

Based on experimental data, the scientists created computer simulations that reproduced the information processing of these nerve cells. “In the simulation, we can supply the cells with any combination of ion channels, connect them in any way, and measure their behavior,” explains Glasauer about the advantages of the models. And even more: “We can even make the simulated frog jump, in order to test its data processing," says Glasauer. First, the researchers examined in a simulated single cell the influence of certain membrane channels on the transmission of incoming stimuli. They found that cells with two different membrane channels have different functions: channels with the first type were suitable for the processing of the exact movement initiation time, while the other type discharged for the entire stimulus duration. In simulations with a number of nerve cells, Glasauer and Rössert found that the interconnection of the cells also plays an important role in processing. “The combination of experimental biology and modeling significantly helped in understanding essential basics of sensorimotor information processing,” says Glasauer. The results are also relevant for clinical and technical research.

Besides others, patients with cerebellar damage could benefit from these research results. The affected individuals have problems in compensating rapid head movements by appropriate eye movements, but no problems in compensating for smooth movements. This might be due to a deficit in one of the two cell types. The highly efficient neuronal processing could also serve as a model for jitter-free camera systems that are used, for example, in driver assistance systems of cars or helicopters.

*Original publication:
Rössert C, Moore L, Straka H, Glasauer S (2011), Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise, J Neurosci, Volume 31, issue 23, 8359-8372

For further information please contact:

Dr. Stefan Glasauer
Bernstein Center Munich and
Ludwig-Maximilians-Universität München
Department of Neurology
Marchioninistr. 15,
81377 Munich, Germany
Phone: +49-89-7095-4839
E-mail: sglasauer@nefo.med.uni-muenchen.de

Johannes Faber | idw
Further information:
http://www.bccn-munich.de
http://www.nncn.de
http://www.lmu.de

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>