Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important adjustment process between the sense of balance and the eyes deciphered

24.06.2011
Our eyes must be tightly coupled with our sense of balance to provide sharp and jitter-free images.

If the adjustment is disturbed, our view is blurred and we get dizzy. Scientists at the Bernstein Center Munich, the LMU München and the Integrated Research and Treatment Center IFB-LMU have now deciphered an important step of this interaction; whether certain neurons transmit information about the start or the duration of the movement depends entirely on a single type of membrane channel and the cells’ interconnections. Optimized therapies against vertigo and the development of jitter-free camera systems could benefit from this research.

Just three steps in the brain are necessary for processing data from the vestibular system and transferring them to the eye muscles. This allows the visual system to adjust to head movements within a fraction of a second. While in the first and last step, information is mainly transferred from the sensors and to the muscles, respectively, the second step is where the essential processing takes place. Scientists found that neurons with different properties are involved in this step: one type is only active during the initiation of a movement, while the other type sends signals during the entire movement. Recently, Dr. Stefan Glasauer, researcher at the Bernstein Center Munich and at the Ludwig-Maximilians-Universität München, and his PhD student Christian Rössert, in collaboration with Prof. Hans Straka, Neurobiologist at the LMU, have found out why this is so. In their study, presented in the Journal of Neuroscience*, they used the already well-understood balance organ of grass frogs.

Based on experimental data, the scientists created computer simulations that reproduced the information processing of these nerve cells. “In the simulation, we can supply the cells with any combination of ion channels, connect them in any way, and measure their behavior,” explains Glasauer about the advantages of the models. And even more: “We can even make the simulated frog jump, in order to test its data processing," says Glasauer. First, the researchers examined in a simulated single cell the influence of certain membrane channels on the transmission of incoming stimuli. They found that cells with two different membrane channels have different functions: channels with the first type were suitable for the processing of the exact movement initiation time, while the other type discharged for the entire stimulus duration. In simulations with a number of nerve cells, Glasauer and Rössert found that the interconnection of the cells also plays an important role in processing. “The combination of experimental biology and modeling significantly helped in understanding essential basics of sensorimotor information processing,” says Glasauer. The results are also relevant for clinical and technical research.

Besides others, patients with cerebellar damage could benefit from these research results. The affected individuals have problems in compensating rapid head movements by appropriate eye movements, but no problems in compensating for smooth movements. This might be due to a deficit in one of the two cell types. The highly efficient neuronal processing could also serve as a model for jitter-free camera systems that are used, for example, in driver assistance systems of cars or helicopters.

*Original publication:
Rössert C, Moore L, Straka H, Glasauer S (2011), Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise, J Neurosci, Volume 31, issue 23, 8359-8372

For further information please contact:

Dr. Stefan Glasauer
Bernstein Center Munich and
Ludwig-Maximilians-Universität München
Department of Neurology
Marchioninistr. 15,
81377 Munich, Germany
Phone: +49-89-7095-4839
E-mail: sglasauer@nefo.med.uni-muenchen.de

Johannes Faber | idw
Further information:
http://www.bccn-munich.de
http://www.nncn.de
http://www.lmu.de

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>